THIS IS A TEMPORARY TITLE PAGE

It will be replaced for the final print by a version

Qi

ECOLE POLYTECHNIQUE
FEDERALE DE LAUSANNE

provided by the service academique.

Thése n. XXX 2014

présenté le 14 Mai 2014

a la Faculté des Sciences de Base

laboratoire Biorobotics

programme doctoral Systémes de production et robotique
Ecole Polytechnique Fédérale de Lausanne

pour I'obtention du grade de Docteur és Sciences
par

Jesse van den Kieboom

acceptée sur proposition du jury :

Prof José del R. Millan, président du jury
Prof Auke Jan ljspeert, directeur de thése
Prof Joshua C. Bongard, rapporteur

Prof Silvestro Micera, rapporteur

Prof Hartmut Geyer, rapporteur

Lausanne, EPFL, 2014

The most exciting phrase to hear in science,
the one that heralds new discoveries,

is not 'Eureka!, but

'That’s funny...’

— Isaac Asimov

Acknowledgements

First of all, I would like to thank my supervisor, Auke Jan Ijspeert, for giving me the opportunity
to do the work presented here in this thesis at Biorob EPFL. Without his continuous support,
advice and guidance there would not have been a thesis to read. I also want to thank all
the people involved in the EVRYON European project for providing a productive and most
importantly, collaborative environment which helped bring together expertise from many
fields. In particular, I want to thank Renaud Ronsse, which has provided invaluable insights
and the occasional Dutch greeting, during his post doctoral position at Biorob. Besides every
member of the group of great people at Biorob, providing an excellent, productive yet fun
atmosphere, special thanks go to Jérémie Kniisel who has been sitting across of me for more
than 4 years and has provided a much needed sounding board at more occasions than I
can count. I would also like to thank my family who have supported me unconditionally
throughout the years. Finally, a very special person who deserves most of my gratitude is
Fanny, who has stood by me for all these years whether the good, the bad or the ugly, thank
you.

Lausanne, 14 May 2014 J.K.

Abstract

Recent developments in lower extremities wearable robotic devices for the assistance and
rehabilitation of humans suffering from an impairment have led to several successes in the
assistance of people who as a result regained a certain form of locomotive capability. Such
devices are conventionally designed to be anthropomorphic. They follow the morphology
of the human lower limbs. It has been shown previously that non-anthropomorphic designs
can lead to increased comfort and better dynamical properties due to the fact that there is
more morphological freedom in the design parameters of such a device. At the same time,
exploitation of this freedom is not always intuitive and can be difficult to incorporate. In this
work we strive towards a methodology aiding in the design of possible non-anthropomorphic
structures for the task of human locomotion assistance by means of simulation and optimiza-
tion. The simulation of such systems requires state of the art rigid body dynamics, contact
dynamics and, importantly, closed loop dynamics. Through the course of our work, we first
develop a novel, open and freely available, state of the art framework for the modeling and
simulation of general coupled dynamical systems and show how such a framework enables
the modeling of systems in a novel way. The resultant simulation environment is suitable for
the evaluation of structural designs, with a specific focus on locomotion and wearable robots.
To enable open-ended co-design of morphology and control, we employ population-based
optimization methods to develop a novel Particle Swarm Optimization derivative specifically
designed for the simultaneous optimization of solution structures (such as mechanical de-
signs) as well as their continuous parameters. The optimizations that we aim to perform
require large numbers of simulations to accommodate them and we develop another open
and general framework to aid in large scale, population based optimizations in multi-user
environments. Using the developed tools, we first explore the occurrence and underlying
principles of natural human gait and apply our findings to the optimization of a bipedal gait of
a humanoid robotic platform. Finally, we apply our developed methods to the co-design of a
non-anthropomorphic, lower extremities, wearable robot in simulation, leading to an iterative
co-design methodology aiding in the exploration of otherwise hard to realize morphological
designs.

Keywords : dynamical systems, rigid body dynamics, bipedal locomotion, natural gait, robotics,
optimization, impedance control, wearable robot co-design, morphology

Résumé

Les récents développements de dispositifs robotiques portables pour les membres inférieurs,
utilisés pour l'assistance ainsi que pour la réhabilitation de personnes souffrant de détério-
ration des fonctions motrices, a permis la récupération de certaines capacités locomotrices.
Ces dispositifs sont conventionnellement congus pour étre anthropomorphique, et suivent la
morphologie des membres inférieures humains. Il a cependant été montré que des modeles
non-anthropomorphiques, permettant plus de liberté quant au choix de conception et du
nombre de parameétres, pourraient offrir un meilleur confort et de meilleures propriétés dy-
namiques. Cependant gérer et exploiter cette liberté de conception n’est pas intuitive et peut
étre difficile a gérer. Dans cette étude, nous présentons une méthodologie basée sur des simu-
lations physiques combinées a des optimisations mathématiques pouvant aider la conception
de structures robotiques non-anthropomorphiques dédiées a I’assistance de la marche hu-
maine. La simulation de ces structures nécessite I'utilisation des avancées les plus récentes en
dynamique des corps rigides, des contacts physiques ainsi que des systémes rétroactifs. Nous
avons tout d’abord développé un nouvel outil, ouvert et disponible gratuitement, permettant
la modélisation et la simulation des systemes dynamiques couplées, et proposant une nouvelle
maniere de modéliser ces systemes. Lenvironnement de simulation résultant peut étre utilisé
pour I'évaluation de conceptions structurelles, en particulier dans le cadre de la marche et les
dispositifs robotiques portables. Pour permettre une conception mixte de la morphologie et
du controle, nous avons développé un nouveau dérivé de I'optimisation par essaims particu-
laires, spécifiquement concu pour I'optimisation simultanée de structures (par exemple une
structure mécanique), ainsi que les parametres continus associés. L'optimisation que nous
souhaitons réaliser requérant un grand nombre de simulation, nous avons donc développé
un autre outil ouvert et accessible librement, permettant le déploiement d’optimisation a
grande échelle dans un environnement multi-utilisateurs. En utilisant les outils développés,
nous avons ensuite exploré les principes fondamentaux de la marche humaine et appliqué
nos découvertes a 'optimisation d’'une démarche bipede d’'un robot humanoide. Enfin, nous
avons combinées les méthodes et outils développés pour le co-design, et les avons appliqués
ala simulation d’un dispositif robotique non-anthropomorphique des membres inférieures
humains. Cette démarche a conduit a une méthodologie de co-design itérative permettant
I'exploration de concepts morphologiques autrement difficile a réaliser.

Mots clefs : systemes dynamique, la dynamique des corps rigides, marche bipéde, démarche
naturelle, robotique, optimisation, contréle en impédance, co-design de dispositif robotique

ix

Contents

Acknowledgements
Abstract

List of figures

List of tables

List of models

1 Introduction

1.1 Co-design of human assistivedevices

1.2 Humanlocomotion. i e

1.3 Tools

1.4 Organizationofthethesis

I Dynamics and optimization

2 Dynamics

2.1 codyn, coupleddynamics e

2.2 Core concepts

221 Nodesandedges
2.2.2 Mathematicallanguage

2.2.3 Edgeprojections

2.2.4 Events

2.2.5 Numericalintegration,

2.3 Modelinglanguage e e

2.3.1 \Variables and simple differential equations

2.3.2 Nodes.
2.3.3 Edges .

2.3.4 Generatorsandselectors
235 Templates e e e
2.3.6 Integrator e

2.3.7 Events

11
12
13
13
15
21
21
22
23
24
26
28
28
33
33
34

Contents

Xii

2.4 Example I: Central pattern generators v v v v v v v v i e 37
24.1 VanderPol. 38
242 Matsuoka 40
2.4.3 Morphed nonlinear phase oscillator 40

2.5 ExampleIl: SLIPmodel 42

2.6 Rigidbodydynamics e 45
2.6.1 Existingsimulators e 47
2.6.2 Derivingequationsof motion 50
2.6.3 Spatialvectoralgebra 0. 51
264 Jointmodels 55
2.6.5 Modeldefinition e 59
2.6.6 Inversedynamics 59
2.6.7 Forwarddynamics 61
2.6.8 Jacobian e 62
2.6.9 Closedloopdynamics, 64
2.6.10 Contactmodeling e 69
2.6.11 Visualization 73

2.7 Performance 73
2.7.1 libcodyn 73
2.7.2 Theroad towards performance 75
273 Asrawas C. e 76
2.7.4 Performancecomparison 79

2.8 Tools 81
2.8.1 Commandlinetools 82
2.8.2 Graphical designerinterface 83
2.8.3 Supportedlanguages 83

29 Availability 84

210 Conclusion e e 85

Optimization 89

3.1 Population-basedmethods 90
3.1.1 GeneticAlgorithms 91
3.1.2 GeneticProgramming 91
3.1.3 Particle swarm optimization 93

3.2 Metamorphic particle swarm optimization 95
3.2.1 Metamorphic PSO Algorithm 96
3.2.2 Properties e e e e e e 101
3.23 Applications e 105
324 DISCUSSION oo e e 106

3.3 Multi objective particle swarm optimization 107
3.3.1 Multi objective optimization 107
3.3.2 Multi objective PSO using lexicographic ordering 108

Contents

II

3.4 Large scale population-based optimization.
3.4.1 Conceptual Overviewot ii
342 Userlayer
3.4.3 Serverlayer
3.4.4 Workstationlayer o
3.4.5 Resultsandanalysis
34.6 Availability
347 Inthewild

35 Conclusion e

Human locomotion and assistance

Optimization of natural human gait

4.1 Human gaitoptimization
4.1.1 Model.
4.1.2 Optimization i
413 Results
4.1.4 Discussion

4.2 CoMan humanoid robot gait optimization
4.2.1 CoMan humanoid robotplatform
4.2.2 Modelingthe CoManrobot
4.2.3 Studyl: CoMan gait optimization

4.2.4 Study II: The effect of impedance control during perturbations

4.3 Conclusion e e

Co-design of human assistive devices

5.1 Initialstudy
5.2 Design e e e e e
5.2.1 Topologies and morphologies
5.2.2 Actuatorplacement
5.2.3 Singularities L L
524 Summary. e e
53 Modeling
5.3.1 Augmented humanmodel.
5.3.2 Closingjointactuation
5.3.3 Constraint forces in closed loop systems
534 Control
5.4 Optimization
54.1 Algorithm
5.4.2 Parameterization oo
54.3 ODbjectives i v i it e
54.4 Singularities e

Contents

55 Results 171

5.6 DISCUSSION e 174
6 Conclusion 177
A Models 181
B Complementary figures 185
Bibliography 199
Curriculum Vitae 201

Xiv

List of Figures

2.1 A conceptual representation of a network of two nodes which are bidirectionally
coupled. e

2.2 Left: System output of a simple point mass accelerating due to gravity. Right:
conceptual representation ofaself-edge

2.3 System output of two simple point masses accelerating due to gravity and simple
airfriction. L

2.4 System output of two simple point mass accelerating due to gravity and under-
going forces from air friction. Additionally, the two point masses are coupled by
abidirectional spring. e

2.5 Graphical representation of a network of two coupled point masses.
2.6 System output of a densely coupled system of point masses.

2.7 Conceptual rendering of a network of a densely coupled system of point masses.
The simple model definition in model 2.5 using generators demonstrates the
generative abilities of the codynlanguage.

2.8 Output of multiple pogo-point mass dynamics with various initial conditions,
masses and spring/damper characteristics.

2.9 Output of a basic system of phase coupled Hopf oscillators. The 5 oscillators are
initially not phase locked, but quickly converge to their desired phase locked
behavior

2.10 Output of a coupled system of two morphed oscillators with arbitrary shaping
functions. The two oscillators start outside their limit cycle but quickly converge.
At the same time, a bidirectional coupling on the phase ensures phase locking
behavior after a short period of time.

2.11 Schematic depiction of the SLIP model. The basic SLIP model consists of a single
point mass m connected to a massless spring with rest length /. The angle of
attack a determines at which angle the leg transitions from the swing phase to
the stance phase duringlocomotion.

2.12 Number of steps to fall for the SLIP model for different combinations of spring
stiffness and angle of attack using codyn. The characteristic J-shape indicates
the stable region of forward locomotion (Seyfarth et al., 2002).

15

26

27

28
29
32

32

37

40

43

43

List of Figures

2.13 System output of a rigid body dynamics simulation of a chain of 5 pendulums.

The first pendulum starts out at an angle and starts accelerating due to grav-
ity. The system is damped by a simple velocity based damping term on the
generalized forces of each of the pendulum joints.

2.14 Left: a schematic representation of a closed loop system of one degree. The

original system consists of 3 revolute joints and is closed to the fixed base through
pa. Right: Output of the simulated system. The resulting joint angle motions are

consistent with the imposed constraint and can be described by a single variable. 70

2.15 Left: a schematic representation of the leg. The open loop system consists of

4 revolute joints, hip, knee, ankle and par. A closing joint, cl, creates a panto-
graphic structure having only 2 degrees of freedom. Right: output of simulating
the system. A damping force acts on the hip and a spring force acts on the knee,
causing quick oscillations. L

2.16 Screenshot of codyn integration in blender. It shows a rendering of the closed

loop system presented in model 2.21. Models can be directly imported from
codyn files and simulated using the Blender game engine.

2.17 Simulation performance of Bullet, SimMechanics, codyn and rawc on systems

with increasing number of degrees of freedom. Simulations were performed for
30 simulated seconds. The y-axis shows in logarithmic scale the real time it took
for the simulations to finish. As expected, codyn itself is an order of magnitude
slower than both Bullet and SimMechanics (which show similar performance).
When using rawc to generate optimized code, we however obtain another order
of magnitude faster simulations, for systems up to 20 degrees of freedom than
Bullet or SimMechanics. Both Bullet and SimMechanics show better scaling
properties towards systems with a larger number of DOFs.

2.18 Performance of codyn rawc comparing different branching factors (1 and 5)

and the effect of sparsity optimization. bf 1 and bf 5 are respectively branching
factors 1 and 5, and sp/nsp indicates respectively sparsity optimized and not
sparsity optimized. The first case (in blue) is identical to the rawc case shown in
figure 2.17. As shown, both the branching factor and the sparsity optimization
have a large impact on general performance.

2.19 Screenshot of the codyn graphical user interface. The canvas represents the

codyn network and can be interacted with to create and modify nodes and edges.
Variables can be added, removed and inspected in the bottom panel.

2.20 Screenshot of the codyn online playground. The panel on the left shows the

codyn declarative language. A rendering of the structure of the current network
is shown in the bottom right panel. Once simulated, resulting signals are auto-
matically plotted in the top right panel for inspection. The codyn network can be
downloaded or easily shared online by obtaining a permalink to the playground
document.

70

74

81

82

83

84

List of Figures

3.1

3.2

3.3

3.4

3.5

3.6

3.7

Representation of a solution program generated by genetic programming for
the canonical problem of mathematical function fitting. Mathematical oper-
ators, and numerical constants make up the alphabet of the genetic
program. The resulting mathematical expression represented by the program
can be evaluated to obtain the quality of the solution.

PSO optimization of the Six-hump camel function as defined in equation 3.5.
This function has two global optima, at approximately the top and bottom center
of the space shown here. The particles start out with random initial positions
and velocities in the 2D parameter space. Particles then start to explore the
parameter space based on their local and global best known parameters. As the
iterations progress (left to right, top to bottom), particles start to converge on
one of the global minima of the function.

Example parameter configuration of a single particle. Each of the parameter
pools A, B and C depict a discrete number of parameter groups. The group
number is indicated in the superscript of each box as well as by the background
shading for clarity. In each pool, only one group can be active and optimized
at a given time. Parameters can overlap between different groups as can be
seen in pool B, where a valid set of parameters is either (4, 5), (5, 6) or (6, 7).
One complete subspace is composed of selecting one group for each pool, for

92

94

example {(1), (4, 5), (9)}. There are a total number of 9 parameters in this example. 97

Schematic overview of the two-layered algorithm. Each of the subspaces con-
tains an independent PSO with a population set to the particles which are cur-
rently in the subspace. The green (triangle) particle represents the best known
solution for each subspace which we call X; (this is equivalent to X in the base
PSO). The blue (rectangle) particle represents the globally best known solution
taken over all the subspaces and is only known only to the outer layer algorithm.
We call this solution Xg.

An example of the migration probabilities involved in migrating the pool B
€ s from one particular current group (B.) to each possible group of B. The
probabilities P(B; — B;), P(B; — B») and P(B; — Bs) can be calculated using
equation 3.6. The resulting probabilities (as functions of P,, P; and Pyg) are given
inequation3.7. e e e e

Mutation probability characteristics for the exploration probability P, local
exploitation probability P; and global exploitation probability Pg, emphasizing
early exploration and late convergence.

Particle flow for subspace 1 (left) and subspace 2 (right). The green (upper) and
orange (lower) areas show respectively the in- and out-flow of particles in each
SUDSPACE. . . . o e e e e e e e e

99

101

103

xvii

List of Figures

3.8

3.9

Comparison of the effect of two projections of multiple objectives. On the left, a
weighted sum aggregation leads to a linear trade-off surface between the two
objectives. While on the right, a weighted product creates a non-linear trade-off
surface. Lines on both plots indicate equivalent objective values while arrows
indicate the gradient of the objective function..

Separation of the Six-hump camel function into contributions from (left to right)
X, yand XY. ..o e e e

3.10 PSO optimization with lexicographic ordering on the Six-hump camel function

as defined in equations 3.14 to 3.17. The particles start out with random initial
positions and velocities in the 2D parameter space. Particles then optimize for
fx fyand f in sequence and finally converge on one of the global minima.

3.11 Schematic overview of the optimization framework architecture

4.1

4.2

4.3

4.4

4.5

xviii

Kinematic and inertial properties of the biped model. Kinematic quantities are
proportional to the total model height and the mass is given proportional to the
total model mass. rq indicates the segment radius of gyration, from which the
inertia can be derived. The schematic on the right shows approximate center of
mass locations and contact point locations on the foot (triangles).

Nominal joint angle trajectories, taken from Winter (2009). The dashed lines
show the result of piecewise interpolating the data points, resulting in a sufficient
representation of the nominal joint angle trajectories.

Example hip stiffness signals resulting from the const (blue solid), step (green
dashed) and ppoly (red dotted) control modes. The large dots represent the
control points which need to be optimized to obtain the resulting signals. We
only annotated one pair of parameters per signal in the figure for clarity (e.g. £
and ki are not shown). Note that we need N + 1 parameters for §x and N for y
(here shown for N =4) for the ppolysignal.

Snapshots of one gait cycle of the best obtained solutions from optimization for
each control mode. The gait is shown from heel-strike to heel-strike. All three
gaits show similar characteristics and look qualitatively human like. The ppoly
gait shows full knee extension, while the other two control modes show the knee
slightly flexed. The torso leans slightly forwardinallcases.

Obtained joint angle kinematics after optimization. All angles are shown in
degrees. The dotted lines are average human joint kinematics for normal walking
(Winter, 2009). The solid lines are resulting joint kinematics after optimization,
for the 5 best obtained solutions. Each row shows one of the const, step and
ppoly control modes. The hip kinematics strongly correspond to normal human
walking. For the knee, best results in terms of matching kinematics are obtained
for the ppoly control mode. Ankle kinematics on the other hand are more
consistent for the stepcontrolmode.

List of Figures

4.6

4.7

4.8

4.9

Optimized joint control signals. The hip, knee and ankle signals are shown in
blue (solid), green (dashed) and red (dotted) respectively. The position plots
show both the reference signal (thin solid) and the resulting (measured) joint
angle. Joint angles are shown in degrees, stiffness in Nmrad ™! kg~! and damping
in Nmsrad~'kg™!. The const control mode stiffness is high for both the knee
and hip joint, resulting in a close match between reference and actual joint
angles. The step control mode features relatively low stiffness patterns, while
still providing close tracking of the reference joint angle. Both the hip and knee
joint tend to stiffen during heel-strike, presumably to stabilize ground impact.

Developed by the , the CoMan is a child size, hu-
manoid robot with series elastic compliant actuators. It has 23 degrees of free-
dom, among which there are 6 in each leg. a) an earlier version of the robot
without its covers (image taken from the). b) the CoMan version at
EPFL. . . e

Kinematic and inertial properties of the CoMan model. Kinematic quantities are
proportional to the total model height and the mass is given proportional to the
total model mass. rg indicates the segment radius of gyration, from which the
inertia can be derived. The schematic on the right shows approximate center of
mass locations and contact point locations on the foot (triangles).

Snapshots of one gait cycle of the best obtained solutions from optimization for
each control mode. The gait is shown from heel-strike to heel-strike. Note that
gaits are normalized to show a single step, their respective walking speeds are
0.48ms !, 044mstand0.33ms™ L

4.10 Optimized joint control signals. The hip, knee and ankle signals are shown in

blue (solid), green (dashed) and red (dotted) respectively. The position plots
show both the reference signal (thin solid) and the resulting (measured) joint
angle. Joint angles are shown in degrees, stiffness in Nmrad ™! kg~! and damping
inNmsrad 'kg™!.

4.11 Resulting control torques for the best solutions obtained for the three control

modes. Torques are within limits in most cases, except for the hip torque in the
ppoly mode and the knee in the const mode. The step torques are within range
of the limits for all joints. Large torques are consistently required during mid to
endstancefortheankle. L L L o

4.12 Fitness progression while optimizing for the last lexicographic objective, cost

of transport, for the run with the best obtained fitness for each control mode.

131

135

136

139

140

From top to bottom, the progression of respectively const, step and ppoly is shown.144

Xix

http://www.iit.it/
http://www.iit.it/en/advr-labs/humanoids-a-human-centred-mechatronics/advr-humanoids-projects/compliant-humanoid-platform-coman.html

List of Figures

4.13 Optimized joint control signals of the best solutions for the const and step control

5.1

5.2

5.3

5.4

5.5

5.6

modes during the last two periods of locomotion. The hip, knee and ankle sig-
nals are shown in blue (solid), green (dashed) and red (dotted) respectively. The
position plots show both the reference signal (thin solid) and the resulting (mea-
sured) joint angle. Joint angles are shown in degrees, stiffness in Nmrad ™! kg™!
and damping in Nmsrad~'kg~!. The magnitude of the perturbation force dur-
ing walking, as applied to the ankle, is shown in the bottom plot. The shaded
areas indicate the swingphase.

Existing exoskeletons for human augmentation. From left to right a) the BLEEX

exoskeleton (source), b) the Sarcos exoskeleton
(source), ¢) the MIT exoskeleton (source Walsh et al. (2007))
and d) the HAL exoskeleton (source)

Lower extremities orthosis used for rehabilitation and support of paraplegics.
From left to right a) the Ekso by Ekso Bionics (source

), b) the ReWalk from Argo Medical Technologies (source ,
courtesy of Argo Medical Technologies) and c¢) the Rex from Rex Bionics (source

Schematic representation of the attachment joints at which the wearable robot
can be attached to the humanbody.

Schematic representation the realization of a specific morphology (right) from a
kinematic topology (left). On the right, the topology is represented as a graph
where edges represent joints and vertices represent segments. One possible
realization of the topology is shown on the right. Joints in orange are the loop
closurejoints.

Morphological representations of enumerated topologies having 3 wearable
robot joints and 4 wearable robot segments. Only a single realization for each
topology is shown, and it should be noted that different realizations of the same
topology can lead to wearable robots with significantly different properties.
Joints in green (1, 4, 5 and 6 in the top row, and 3, 4, 5 and 6 in the bottom row)
are the added attachment and wearable robot joints, while the orange joints (2

146

150

150

155

156

and 3 in the top row, 1 and 2 in the bottom row) are the added loop closure joints.158

Schematic illustration of the determination of valid actuator pairs in given a
topology. In this case, the pairs (1,4) and (1, 6) are checked for topology 2. We
start on the left with the full topology and then collapse joint 1 to obtain the
second topology and check for the mobility of the topology using equation 5.1.
If the mobility has reduced by a single degree when collapsing a joint, then that
joint can be a valid actuator. Next we check for the second actuator in each
pair. When collapsing joint 4 (top right), we obtain k = 1 and thus DOFs are not
reduced and the pair is invalid. On the other hand, collapsing joint 6 (bottom
right) results in k = 0 and thus (1,6) is a valid actuator pair.

http://bleex.me.berkeley.edu/
http://robohub.org
http://www.cyberdyne.jp/
http://www.eksobionics.com
http://www.eksobionics.com
http://rewalk.us
http://www.rexbionics.com

List of Figures

5.7

5.8

5.9

Occurrence of a simple kinematic singularity. It is intuitive in this case that
applying a torque on joint 6 would result in only linear forces acting on the
knee joint, and not in any torque. Therefore, no amount of torque applied to
joint 6 will result in any movement of the knee, hence the singularity. Note
that a singularity is not a property of the kinematic chain only, it depends on
where torque is being applied in the chain. In this case, the knee joint itself (for
example) can still be actuated without problems.
Probability curves determining the rate at which particles are mutated to a dif-
ferent parameter subspace. The curves are designed such that there is early
exploration and late convergence towards a global optimum. Since the optimiza-
tion problem is complex, particles mutate on average only every 20 iterations, as
determined by P, in the beginning. From iteration 500, particles start to transfer
to the globally best known parameter subspaceby Pg.
Morphology of the 3 best obtained results. From left to right, topology 2, topology
5 and topology 3. Note that the wearable robot segments are offset in this
schematic view from their original position, for clarity.

5.10 Number of evaluations in each parameter subspace. Each topology (on the x

B.1

B.2

B.3

B.4

axis) corresponds to the topologies shown in figure 5.5, while each actuator pair
corresponds to the pairs listed in 5.1. Cells indicated with 0 are invalid configu-
ration spaces (i.e. topology 1 has only 9 possible actuator pairs). Furthermore,
cells indicated with x are not visited at all while the cell marked with t indicates

161

172

172

the topology and actuator pair of the optimal solution found in that particular run.174

Rendering of a walking sequence optimized for the CoMan robot using a variable
stiffness and damping controller (step). The gait shown here is relatively slow,
0.44ms~!, but manages an efficient cost of transport. See also section 4.2 for
more details on the methods used to optimize thisgait.
Rendering of a walking sequence optimized for the CoMan robot using a variable
stiffness and damping controller (step) while under perturbation. The perturba-
tions are applied randomly on the ankle in the direction of locomotion during
the swing phase. The resulting controller, although open loop, is able to self-
stabilize by modulating the stiffness and damping periodically. See also section
4.2.4 for more details on the methods used to optimize this gait.
Rendering of a non-anthropomorphic wearable robot co-designed for human
locomotion. See chapter 5 for more details on the methods used to optimize this
wearablerobot. L L
Rendering of a non-anthropomorphic wearable robot co-designed for human
locomotion. See chapter 5 for more details on the methods used to optimize this
wearablerobot. L

186

187

188

List of Tables

2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8

3.1
3.2
3.3
3.4

4.1
4.2
4.3
4.4
4.5
4.6
4.7

5.1
5.2
5.3
5.4

Listof built-inoperators 16
Listof built-infunctions L 16
Matrix index operations e e 19
Symbolicoperations 20
Integration procedure e 23
Supported generator SYNtaxXes v v v v v i e e e e e e e e 30
Listof common selectors 35
Commonly used spatial operations 54
Multi objective PSOmethods 109
Lexicographic objectives of separated six-hump camel function 110
TaskMessage i e 113
Result Messageo i ittt e e e e e 113
Control modes for k (samefor b) 125
Lexicographic Objectives 127
Optimizing Parameters. e 127
Average Performance L 130
Lexicographic Objectives 138
Gait speed characteristics of best obtained solutions 140
Optimization summary ittt e e 144
Actuator pairs foreach topology 160
Listof open parameters it 166
Lexicographic Objectives 168
Top 3 obtained powersolutions., 171

xxiii

Listings

2.1 Accelerating point mass [] e e e 26
2.2 Two accelerating point masses with friction [| 27
2.3 Coupling by a spring between two point masses | S 29
2.4 Basic generator syntax [O 30
2.5 Generating many nodes and edges using generators [31
2.6 Use of expansion contexts [33
2.9 Specify the type of integrator [play] 33
2.7 Basic selector syntax | | 34
2.8 Templates [A 34
2.10 Basic usage of events |) 36
2.11 Basic network of coupled Hopf oscillators | R 39
2.12 Van der Pol oscillator templates [S 39
2.13 Matsuoka oscillator template [play] 41
2.14 Example model of a morphed phase oscillator [P 42
2.15 Spring loaded inverted pendulum [play] 44
2.16 General physical body and joint definition 56
2.17 Various available joint types | 58
2.18 Simple multi-pendulum model definition [S 60
2.19 Example usage of Jacobians [P 65
2.20 Example of a loop closing joint [1 e 69
2.21 Example of a closed loop pantographic leg | P 87

A.1 Basic CoMan model definition in codyn. This makes use of an additional file (pro-
vided below in model A.2) which specifies the inertial and kinematic properties.

This file constructs the rigid body dynamics on top of the base model. 181
A.2 CoMan inertial and kinematic properties. This file is used by model A.1 to con-
struct the full rigid body dynamicsmodel. 182

http://play.codyn.net/d/LqKZ7hjb8W
http://play.codyn.net/d/RkRyYcDnYf
http://play.codyn.net/d/NsSYAc6PHj
http://play.codyn.net/d/B7IXkn9G8e
http://play.codyn.net/d/gC9G2EImtn
http://play.codyn.net/d/V64ruLnviS
http://play.codyn.net/d/95ubZTQxlw
http://play.codyn.net/d/53LkMz2pVQ
http://play.codyn.net/d/kq12eYGBkx
http://play.codyn.net/d/HgvZUgyHCS
http://play.codyn.net/d/hy3Sxadjt1
http://play.codyn.net/d/Oe6Z0FzIuD
http://play.codyn.net/d/jFzq2FTbYD
http://play.codyn.net/d/sZ8hMNm1jj
http://play.codyn.net/d/zgiRBdyEag
http://play.codyn.net/d/G1lGYNEXML
http://play.codyn.net/d/E1RsmCo5g6
http://play.codyn.net/d/Z5G8qyGQxU
http://play.codyn.net/d/0GeK7jY4QS
http://play.codyn.net/d/0StXWjechk

|§ Introduction

“If we knew what it was we were doing, it would not be called research, would it?” — Albert
Einstein. Taken with a little smile, I personally like this expression of what it means to do
research or science in general. It is of course not that we have absolutely no idea what we are
doing, but it is true that we often do not know exactly where it will lead us. Exploration and
discovery, challenging the status quo is at the very heart of the motivations of so many people
in the world contributing to the sciences.

Scientific contributions are made in many different ways, but what they have in common
is that they seek to further human knowledge and understanding of the universe. Science
is in the service of society and... My apologies, I believe I let my thoughts drift there for a
moment. Just like the work presented in this thesis, many scientific contributions, apart from
the occasional real geniuses, are not of mind-boggling, society altering nature. Still, I want
to believe that, even if ever so small, contributions can be made that serve the betterment of
society in general and exploring new avenues in the process.

My own journey, written here to be read, began with an interest in the application of computer
science to the human sciences, with a particular interest in human locomotion. Having a
background in Artificial Intelligence rooted in social sciences rather than the usual computer
sciences, I am especially interested in computer aided design methodologies based on natural
processes, and apply those to the design of wearable devices for the support of the less able.

1.1 Co-design of human assistive devices

Towards this end, and as part of the European funded EVRYON project, we start by looking at a
novel design methodology for the development of a lower extremities wearable robot designed
for the support of human walking. To the best of our knowledge, all recently developed
exoskeletons, whether for human performance augmentation or assistance/rehabilitation
purposes, follow an anthropomorphic design, i.e. following the morphology of human limbs.
This is certainly the more intuitive choice, since 1) the mechanical design is already known

Chapter 1. Introduction

beforehand (although of course also not trivial to realize), and 2) an anthropomorphic device
is more socially acceptable. On the other hand, non-anthropomorphic designs have possible
advantages as well. For example, by allowing additional kinematic freedom, it is possible
to increase user comfort (Schiele and van der Helm, 2006) by avoiding macro- or micro-
misalignments with human joints, which behave more complexly than a single degree of
freedom. Allowing more freedom in the mechanical design by avoiding anthropomorphicity
also has the potential of a device which has improved or more finely tuned dynamic properties
when considering the human body and the wearable robot together. We will discuss existing
wearable devices for locomotion assistance in more detail in chapter 5.

Although the possibility of a non-anthropomorphic design is an interesting one, it is also more
difficult to have a good intuition for what such a design should look like. In the early work of
Sims (1994b,a) it was shown that by using artificial evolutionary processes, the morphology of
(relatively simple) creatures could be evolved to accomplish various tasks, such as walking,
jumping and swimming. The resulting morphologies gave insight into the role of the body in
interaction with the environment aiding to solve these tasks. These insights may be intuitive in
hindsight, but they are not necessarily so beforehand. Other seminal work in the exploration
of morphology is presented in (Lipson and Pollack, 2000) where robotic lifeforms were not
only designed in an automated fashion, but also manufactured. In Paul and Bongard (2001) it
was shown that similar principles could aid in the design of a biped walker where morphology
was adapted to show an increase in performance.

The idea that the body, and not just the control, is an important property of a system is cap-
tured by the concept of Embodied Intelligence. Rooted in philosophy, but applied to robotics
and artificial life forms in general (Brooks, 1992; Pfeifer et al., 2007) it states that artificial
intelligence can exist only through an embodied agent interacting with its environment. I.e.
part of what we consider intelligent behavior is caused by the body, rather than the mind
(or control). It is easy to see how in nature, the body plays a large role. It is after all the only
instrument through which it is possible to interact with the environment. Not only does this
idea transcend to the design of robots (Hara and Pfeifer, 2003), it also becomes relevant when
looking at adaptation of behavior due to unexpected changes in morphology as shown in
Bongard et al. (2006).

Evolutionary algorithms provide an interesting approach to the goal of embodied design since
they allow for very open-ended specifications of the problem domain, therefore promoting
the possibility of discovery of novel designs (Floreano et al., 2004). Here we seek to use these
type of evolutionary processes for the co-design of a non-anthropomorphic wearable robot
designed for the task of human locomotion assistance. We therefore do not only try to optimize
the control of such a device, but its morphology (i.e. mechanical structure) and actuator
placement as well. We look specifically at the development of a methodology grounded in
an iterative design principle. Rarely are evolutionary algorithms used for the development of
a final and completely finished product, nor do they allow for incorporation of all possible
design parameters. Instead, found solutions give insights in possible designs which have to be

1.2. Human locomotion

further refined afterwards. To this end, we look at developing a methodology which allows for
easily (re)optimizing such refinements iteratively.

1.2 Human locomotion

The co-design of a wearable device for human locomotion assistance cannot be done without
looking first at the dynamics of human locomotion itself. Human locomotion is a well studied
subject and of particular interest is the early work done on passive dynamic walkers (McGeer,
1990). Here it is shown that much of the dynamics of walking can be prescribed to the mechan-
ics, instead of actuation or control. This idea is very much in line with the idea of embodied
intelligence since it turns out that the human body, although not entirely passive of course,
is particularly well suited for the task of locomotion. Passive dynamic walkers are however
also very unstable (at least the ones that are purely passive). The slightest disturbance could
destabilize the system and make the walker fall over easily. A wearable device in many ways
can be seen as a disturbance to the human body and it would therefore make sense to try and
optimize not only the control of a wearable device but also its structure such as to find new
optimal locomotion modes, such that disturbances are minimized.

Since open-ended optimization is a complex task, especially when looking at optimizing
for stable bipedal gaits, we first seek to verify our methodology on normal, un-augmented
human walking. We are interested in the minimal conditions for the emergence of human
gait by optimizing high-level objectives only, and look at the application of population-based
optimization strategies towards this goal. If we manage to do so, then within reasonable
assumptions, we can try and apply the same methodology to the co-design of a wearable robot.
To validate the importance of morphological design for the emergence of natural gait we also
look at applying the exact same methodology to a model of a humanoid robotic platform and
see that it is important to not only mimic natural systems, but take dynamical properties of
such a system into account during its design.

1.3 Tools

In the process of developing the necessary tools for doing the research as described in the
previous paragraphs, we realized that the available scientific tools needed for our approach
were not readily available. We firmly believe that one of the core values of scientific work lies
in the fact that research should be open, freely available to everyone and anyone, and readily
reproducible. We realized after our initial studies that this would not be easily possible with
available simulation software. Furthermore, we found that most existing software was not
adequate for the use of morphological design of our specific needs.

In particular, we look at advancing the state of the art in two areas of interest, by providing
ready to be used, open, and freely distributed frameworks specifically designed for the research
presented in this thesis. The first area of interest is that of general purpose, unified coupled

Chapter 1. Introduction

dynamical systems modeling, including rigid body dynamics. Specifically when looking at the
simulation of 1) complex rigid body systems, such as parallel structures, 2) contact models
suitable for locomotion and 3) simulations targeting design principles, we found none of the
existing solutions suitable for all of our criteria. We are not the only ones that have shown a
recent interest in the scientific community for the availability of such simulation software and
we believe that with the work presented in this thesis we make a valuable contribution. To the
best of our knowledge, we present here the first freely available and open implementation
of a novel dynamical system simulation environment with a strong focus on openness, ex-
pressiveness, modeling, performance and education. We focus specifically on the modeling
and simulation of coupled dynamics, whether coupled oscillator systems (or central pattern
generators) , rigid body dynamics or other types of dynamics.

The modeling of rigid body dynamics is certainly not a new problem. There are generally
speaking two methods for deriving the dynamical equations that govern rigid body systems.
Simulators such as ODE, Bullet or Box2D are open and freely available simulators which
initially consider all physical bodies to be unconstrained and then explicitly add constraints to
the individual body equations of motion. This method is popular in these engines, which target
games and movie production, since it leads to physically believable and relatively fast forward
simulations. They are however inadequate when used for research purposes, in particular
when looking at design. The reason is that all of these simulators aim at physically realistic
simulations, but not necessarily accurate ones, often trading accuracy for speed of simulation.
They also do not derive equations of motion in a form useful for model-based control, deriving
interaction forces, accurate contact modeling or system analysis.

On the other end of the spectrum are simulators which actually derive the system’s equations
of motion, whether symbolically or numerically, in its entirety by projecting the dynamics
into generalized coordinates. This has many advantages, in particular for research purposes
since analysis can be done on the system when all quantities of the equations of motion
are known. Furthermore, the resulting dynamics are physically more accurate and useful
quantities for design of systems. For example accurate interaction forces are readily available.
The derivation of the equations of motion is a well studied subject and an outstanding and
detailed explanation of it can be found in Featherstone (2008). Few implementations however
are available at present. Of those, including simulators such as Robotran or OpenSim, none
provide 1) ease of modeling, 2) support for sophisticated contact modeling, 3) closed loop
dynamics, 4) performance and 5) easy extensibility. Additionally, recent developments such
as MuJoCo (Todorov et al., 2012), which take a similar approach, are of great interest but
unfortunately as of yet are unavailable. Not only do we aim at providing a state of the art
implementation of the derivation of the equations of motion of rigid body systems as detailed
in Featherstone (2008), we importantly do so in a manner which makes modeling pleasant
and unified with other types of dynamical systems.

The second area of interest is that of large scale, population-based optimization. Although not
necessarily novel, we develop a framework which allows for the managed execution of multi-

1.4. Organization of the thesis

user, large scale population based optimizations. Furthermore, the framework is agnostic
in terms of optimization algorithm or task execution and can be used for general purpose
task distribution. Several optimization algorithms including basic Genetic Algorithms and
Particle Swarm Optimization are provided, as well as several common task dispatchers such
as simulation in the Webots (Michel, 2004) simulator or Matlab. We understand that the
scientific value of such a framework is limited, however it has been of integral importance as
an application to many of the research performed in our laboratory and in particular to the
work presented in this thesis. We also believe that as such it has potentially great value for the
scientific community.

1.4 Organization of the thesis

The remainder of this thesis is divided into two parts. In the first part we develop tools,
frameworks and algorithms for the modeling and simulation of coupled dynamical systems
and look at the use of population based, large scale optimization specifically for use in robotics.

In chapter 2 we first contribute a state of the art, open and freely available framework for the
modeling of coupled dynamical systems, with a specific focus on central pattern generators
and rigid body dynamics. We develop a novel declarative modeling language in which coupled
dynamics can be naturally and uniformly described, allowing integration of multi-domain
dynamical systems. Using this language, a modern and competitive rigid body dynamics
simulator is implemented based on Featherstone (2008), including declarative system model-
ing, custom joint models, soft and hard contact models, inverse- and forward-dynamics and
modeling of closed loop systems. Finally, optimized, low-level code is automatically generated
from the high-level model description with a special focus on running on Real-Time and/or
embedded systems, even micro-controllers.

We then continue to chapter 3, where we briefly discuss population based optimization
methods and develop a novel Particle Swarm Optimization (Kennedy and Eberhart, 1995)
based algorithm for the simultaneous optimization of solution structure and its corresponding
continuous parameters. This allows for the optimization of the type of problems which have a
known set of possible solution structures each with a set of, possibly overlapping, continuous
parameters. Finally, we present another open and free to use framework for performing large
scale optimizations in multi-user environments, particularly suited for population based
optimizations.

In the second part of this thesis we use these tools to study the co-design of a non-anthropomorphic,
lower extremities, wearable robot for human locomotion assistance. Because natural human
gait lies at the core of human locomotion assistance, before we dive into the co-design, we first
explore in chapter 4 the use of population based optimization methods and impedance control
to (re)discover natural human gait from first principle objectives only. We show that global
gait characteristics, such as heel-strike, toe-off and stance/swing duration, and stable walking
are obtained by optimization for forward locomotion and energy efficiency only, and look at

Chapter 1. Introduction

the role of impedance control to do so. The same method is then used to optimize a human
like gait (in simulation) for the CoMan compliant humanoid robot (Tsagarakis et al., 2013) by
looking a the optimization of mechanical cost of transport. Here we show by comparison with
our previous study on a normal human sized model, that the morphology (and not only the
biomimeticity) of a humanoid robot plays an important role in its design. Finally, the role of
impedance control in locomotion while under the influence of perturbations is studied using
these same methods.

In chapter 5, we investigate the use of population based optimization algorithms for the co-
design of a wearable robot suitable for human locomotion assistance. We look at optimization
of the morphology of the human augmenting robot to assist locomotion using a semi open-
ended explorative search with the algorithm developed in chapter 3. Together with the tools
developed in chapter 2 we provide a comprehensive framework for the future exploration of
iterative design methods for non-anthropomorphic wearable robots.

The contributions made in the course of this thesis are the following:

1. A state of the art framework for the modeling and simulation of coupled dynamical
systems using a novel design methodology for model construction allowing for the
construction of complex and parametrized systems. Using a unified approach for the
modeling of dynamics, multiple dynamical domains can be modeled in the same way. In
particular, we focus on the modeling of 1) oscillators and central pattern generators and
2) rigid body dynamics. Special attention is paid to the simulation of dynamical systems
suitable for Real Time and embedded systems as well as micro-controllers, without the
loss of expressiveness or generality.

2. Anovel Particle Swarm Optimization based optimization algorithm for the simultaneous
optimization of structural parameter configuration spaces and their corresponding
(possibly overlapping) continuous parameters. The resulting algorithm is suitable for
optimization problems in which the possible set of solution structures is known (or can
be enumerated) but is to be explored using cooperative strategies similar to those of a
normal Particle Swarm Optimization.

3. Aframework for performing task and task execution agnostic, large-scale, population-
based optimization in a multi-user environment. Combined with the framework for
modeling of coupled dynamics, the two frameworks provide a methodology for the
optimization of various robotics problems, of which we present two in particular.

4. A method for the optimization of natural human gait using impedance control from
high-level objectives (such as uprightness, walking at a desired speed and minimization
of energy). The proposed method leads to the automatic recovery of global human
gait characteristics, such as swing/stance duration and heel-strike, foot-roll and toe-
off without explicitly optimizing for it. Furthermore, using the same methodology, we
show the importance of morphological design by optimizing for natural gait of a hu-
manoid robotic platform, and explore the role of impedance control further under the

1.4. Organization of the thesis

application of perturbations and rejection of its disturbances.

5. Finally, we combine all of the above developed methods for the design of an iterative
methodology and employ the resulting system for the co-design of the morphology
and control of a wearable robot for the purpose of human locomotion assistance.
We show the viability of such a methodology and provide insight in possible non-
anthropomorphic design principles.

We conclude the work presented in chapter 6.

Dynamics and optimization

YA Dynamics

Dynamics are everywhere, and quite literally so! Merriam-Webster defines dynamics as “a
pattern or process of change, growth, or activity”. In a sense, a dynamical system can be defined
as a system that is subject to change over time. Obviously, this is a very general definition that
is generally true for most systems (at least the interesting ones). From a mathematical point of
view, a dynamical system is simply any fixed set of rules which describe the time dependence
of the position of a point in a space.

This chapter surveys the simulation of a particular set of dynamical systems, namely those
systems described by Ordinary Differential Equations (or ODE’s). When we originally set out,
we found that existing software for working with these type of systems, although providing
great tools for some of its aspects, would on the other hand sorely lack other important
features, such as ease of modeling, good performance, availability and model parametrization.
Of course, all major scientific computing software packages such as Matlab or Mathematica
allow you to write down the differential equations that govern a particular system and (for
example) numerically integrate them. This however is not where great software assisted design
of dynamical systems should end.

A well designed software framework would allow you to write differential equations in their
pure mathematical form and couple isolated systems together as a first class construct. It
would allow you to define your system in a structural and maintainable way while visualizing,
analyzing and numerically integrating them. It would then allow you to take your high-level,
structurally and mathematically sound system and automatically transform it into an efficient
representation suitable for running on constrained embedded and/or real time hardware
(with a particular focus on robotics systems). It would also provide a multitude of tools for
graphically designing simple systems (great for educational purposes), and bind to various
existing programming languages with minimal effort.

Dramatism aside, codyn is a software framework that features all of the above, and more. In
many ways, it has been the cornerstone of this thesis and deserves to be its first chapter after
the introduction. In the remainder of this chapter we go through its major design aspects,

11

Chapter 2. Dynamics

various implementation details and give a number of examples of systems which are ideally

suited for representation and simulation in codyn.

2.1 codyn, coupled dynamics

codyn (Coupled Dynamics) is the umbrella name for the framework of various software
libraries and tools specifically designed to address issues with existing frameworks to design

and simulate coupled dynamical systems. The core motivations that drove the design for such

a framework are the following:

12

1. Free/Open: The most popular available scientific tools which do well at dynamical system

modeling are proprietary. Open alternatives such as Octave, or more recently Julia are
available but lack libraries, toolboxes and communities to make them real alternatives
in many cases. Scientific advancement is an open endeavor at its very core and its tools
should therefore also be available in the open, free (as in freedom) for anyone to inspect
and modify. Even if personally a strong proponent of free/open software, proprietary
software is not only problematic from an ideological standpoint. There has been a
recent push towards explicitly producing free and open software as a product of scientific
projects (as a European policy) for a good reason. Open software can be reused, modified,
improved and scientific work done with them easily reproduced without requiring an
expensive license. Although there are free alternatives for tools such as Matlab and
Mathematica (for example Octave or Maxima) they are not specifically tailored towards
simulations of dynamical systems and do not meet our other motivations.

. Domain specific: Domain specific languages (or DSLs) are languages specifically de-

signed to fit a particular domain. They are popular because they can be made such that
their problem domain can be represented in the best suitable way. This is in contrast to
general purpose languages which have to cover general computational requirements.

. Expressive: Users should be able to express a dynamical systems model in a concise

manner, without losing flexibility in general. Existing software frameworks do not pro-
vide specific constructs to express complex dynamical systems in a short and easily
understood way.

. Performance: There is often a trade off to be made between 1) expressiveness/flexibility,

2) ease of use and 3) performance. It is relatively easy to create a system which features
two of these characteristics, but when a framework is focused on the first two charac-
teristics performance is often lacking. codyn aims to provide good performance while
preserving expressiveness and ease of use.

. Educational: codyn was not only created as a research tool but also as a tool for educa-

tional purposes. It provides various utilities which make it easy to explore and interact
with dynamical systems. Although cdédyn has not been used as course material, we
have used it to introduce modeling and simulation of coupled dynamical systems for
semester and master projects where it provided a great learning experience through

2.2. Core concepts

experimentation.

The next sections will first go over the conceptual design principles of modeling in codyn
and the specially developed language which implements this design. Then two realizations of
coupled dynamical systems, central pattern generators and rigid body dynamics are discussed
within the developed framework. Finally details on performance, tools and examples are
provided.

codyn is available at . The website contains all information related
to codyn, including documentation, manuals, examples, downloads and sources. All of the
codyn software is released under the LGPL (for libcodyn) and GPL free software licenses.

2.2 Core concepts

codyn is specifically designed to ease the modeling of coupled dynamical systems. We focus
only on systems which can be represented by sets of ordinary differential equations. Although
partial differential equations underlie many naturally occurring dynamical systems as well,
codyn currently does not support their modeling. Coupled dynamical systems are systems
which can usually be designed as a number of independent, isolated systems plus their inter-
coupling. Often, these couplings can be represented as additive terms in the differential
equations of the separated systems. This leads to a natural representation of these systems
as a layered directed graph, which is one of the core foundations of the codyn framework. It
should be noted that codyn only supports additive coupling naturally. Other types of coupling,
such as multiplicative coupling involving several emitters, can still be used, but not without
working against codyn’s main concepts.

This section briefly introduces the core concepts and principles upon which the codyn frame-
work is built.

2.2.1 Nodes and edges

codyn has been designed around concepts which give an intuitive notion to building coupled
dynamics system. In codyn, a coupled dynamical system is called a network. The network
term arises from the fact that in codyn, dynamical systems are modeled using nodes and edges,
which are structurally organized as a network (or graph) of connected components.

A node in codyn is simply an object containing variables. There are several types of variables
with different semantics. A state variable is a variable with an associated differential equation
which can be numerically integrated over time. A discrete variable is similar to a state variable,
except that it describes the discrete-time system (map) differential equations instead of a
continuous integral. Finally, there are normal variables which can be used to define reusable
(sub)expressions or parameters.

13

http://www.codyn.net/

Chapter 2. Dynamics

An edge connects two nodes and defines a coupling of variables between nodes. For state
variables, an edge defines a (part of a) differential equation of the state variable. Edges can
reference variables from both input and output nodes and a single edge can define differential
equations for more than one variable.

It is important (conceptually) to realize that all differential equations in codyn are imple-
mented using edges. To make writing differential equations which only access states and
variables from the same node more convenient, each node also contains a so-called self-edge.
The self-edge is basically an edge with its input and output set to the node it is contained
within.

To allow composability and modularity, nodes can themselves contain other nodes and edges.
By these means, subsystems can be easily constructed and interconnected. The network itself,
then, simply becomes the top level node containing top level variables and other child nodes
and edges.

Consider for example the following simple system of coupled differential equations:

X1=-1+(x2-x) 2.1

X2 =1+ (x1 —x2), (2.2)

with initial conditions x; = 1, x, = 0. This system can be represented naturally in codyn by
separating the coupling terms from the “main” differential equations for each variable:

X =-1 (2.3)

iy =1 2.4)
X1 =X2— X1 (2.5)
X1—2=X1—X2 (2.6)

Of course, this is a somewhat contrived example and coupling could be separated differently
or not at all in this case. Equations do not need to be separated in this way, and the user is
free in which manner the equations are modeled conceptually. However, as we will see later,
the separation of equations in their canonical system dynamics and coupling dynamics is
natural for a variety of systems. We will see more examples of coupled dynamical systems in
the following sections. Conceptually, this system can be modeled in codyn using nodes and
edges as shown in figure 2.1.

codyn requires the user to specify systems in this manner, i.e. using nodes and edges, and a
large number of systems can be modeled naturally using these concepts.

14

2.2. Core concepts

X1 — X2

X2 — X1

Figure 2.1 — A conceptual representation of a network of two nodes which are bidirectionally
coupled.

2.2.2 Mathematical language

All variables and differential equations are expressed in a mathematical expression language
which closely resembles that of existing programming languages, with some additional fea-
tures specific to the design of dynamical systems. In codyn everything that has to be computed
is expressed by mathematical expressions. In addition, all values in codyn are real-valued,
2-dimensional matrices. This decision imposes certain limitations. For example, complex
numbers cannot currently be represented in codyn, nor can natural or integer numbers. How-
ever, we found that this does not pose a practical limitation on the type of systems that we
want to model in codyn. Vectors are simply a matrix of n-by-1 or 1-by-m and single numerical
values are matrices of 1-by-1.

Furthermore, all mathematical expressions have static dimensions. In other words, once an
expression is defined, its dimensions cannot change during the course of simulation. This is
a very important design decision in codyn leading to a large number of advantages in terms
of performance and applicability. The rationale, advantages and disadvantages of this are
discussed in more detail in section 2.7.

Built-in operators

codyn supports all of the standard mathematical operations on values and all operations are
properly defined for vectors and matrices. Table 2.1 lists all available operators in the language.
Unless otherwise specified, they operate on an element-wise basis. For binary operators, the
left and right hand sides need to be of the same dimension (with the exception of matrix
multiplication) or one of the values needs to be a 1-by-1 value.

Logical operations are supported, but operate on floating point values. The resulting values
are again floating point values.

15

Chapter 2. Dynamics

Table 2.1 - List of built-in operators

Operator Description Matrix behavior

-a Unary minus

a-Db Subtraction

a+b Addition

axb Multiplication Matrix multiplication is performed when the num-
ber of columns in a equals the number of rows in
b. Otherwise, element wise multiplication is per-
formed.

a.*b Element wise multiplica- Unambiguously performs element wise multiplica-

tion tion.

alb Division

a%b Floating point modulo

arb Power

Logical operators

a>b Larger than

a<b Smaller than

a>=b Larger than or equal to

a<=b Smaller than or equal to

a==>b Equal

al=>b Not equal

allb Or

a&&b And

la Negation

a?b:c Ternary conditional, i.e.

(if a then b else ¢)
Unicode operators
a-b Multiplication of @ and b, same as *
a+b Division, same as /

Built-in functions

Table 2.2 — List of built-in functions

Function Description
sin(a) Sine

cos(a) Cosine
tan(a) Tangent
asin(a) Arc sine
acos (a) Arc cosine

16

2.2. Core concepts

atan(a)
atan2(a,b)
sinh (a)
cosh (a)
tanh (a)
sqrt(a)
invsqrt (a)
hypot (a, b)
hypot (a)
sqsum(a)
min (a, b)
min(a)

min (a, b)
min(a)
exp(a)
exp2(a)
erf (a)
floor(a)
ceil(a)
round (a)
abs (a)

pow (a, b)
1In(a)
logl0(a)
lerp(a,b,c)
sign(a)
csign(a,b)
clip(a,b,c)
cycle(a, b, c
index(a, b)

lindex(a,b,c)
transpose(a)

inv(a)
pinv(a)

linsolve(a,b)

qr(a)

sum (a)
product (a)
length(a)
size(a)
size(a,0)
size(a,l)

Arc tangent

Arc tangent of two variables
Hyperbolic sine

Hyperbolic cosine

Hyperbolic tangent

Square root

Inverse square root

Euclidean distance between a and b
Norm of a (i.e. Va?)

Squared sum of a (i.e. ¥; a7)
Element wise minimum of a and b
Minimum element of a

Element wise maximum of a and b
Maximum element of a

Base-e exponent of a

Base-2 exponent of a

Error function of a

Rounding down to nearest integer
Rounding up to nearest integer
Rounding to nearest integer
Absolute value

Power of ato b

Base-e logarithm of a

Base-10 logarithm of a

Linear interpolation of b to c given a € (0, 1)
Sign of a

Value of a with sign of b

Value of a bounded in (b, ¢)

Value of a cyclic to (b, ¢)

Index a by indices in b

Linear indexing of a by indices in b, given row dimension ¢

Transpose

Inverse

Pseudo inverse

Solvefor xinax=">b

QR decomposition

Sum of elements in a
Product of elements in a
Largest dimension of a

Dimension of a (returns 1-by-2 rows and columns in a)

Number of rows in a
Number of columns in a

17

Chapter 2. Dynamics

vcat (a, b)
zeros (n, m)
eye(n)
diag(a)
tril(a)
triu(a)
csum(a)
rsum(a)

aT

2 (a)
[1(a)

aZ

V(@

Vertically concatenate a and b
Zero matrix of n-by-m
Identity matrix of n-by-n
Diagonal of a

Lower triangular matrix of a
Upper triangular matrix of a
Column wise summation

Row wise summation

Unicode functions
Transpose, same as transpose (a)
Sum of elements in a, same as sum (a)
Product of elements in a, same as product (a)
a squared, same as pow (a, 2)
Square root of a, same as sqrt (a)

Rigid Body Dynamics Functions

slinsolve (A, b, 1)

s1tdl(A4,A)

sltdldinv (L, b)
sltdldinvlinvt (L, b, 1)

sltdllinvt (L, b,A)

sltdllinv (L, b,)

Sparse linear system solve for x in Ax = b given sparsity induced
by branching from A

LT DL decomposition of A given sparsity induced by branching
from A

Solve for x in x = D~!b given LT DL decomposition in L

Solve for x in x = D™' L' b given LT DL decomposition in L and
sparsity induced by branching from A

Solve for x in x = L™ b given LT DL decomposition in L and
sparsity induced by branching from A

Solve for x in x = L™'b given LT DL decomposition in L and
sparsity induced by branching from A

A large number of built-in functions are readily available for use in codyn. Table 2.2 lists
all currently available functions. Most functions listed are general purpose mathematical
functions. There are however a few special purpose functions (at the end of the table) which
are used to solve various aspects of the rigid body dynamics. More details about these functions

are provided in section 2.6.

Random numbers

The built-in functions rand(a) and rand(a, b) deserve special mention in the context of a
codyn dynamical system. codyn takes special care to ensure that random numbers can be

18

2.2. Core concepts

used reliably and reproducibly during numerical integration. This needs special attention due
the fact that expressions are evaluated as needed during simulation. Therefore, if a simulation
was to be repeated we would like to avoid to obtain different results if expression were to be
evaluated in a different order (which can happen due to the lazy evaluation behavior of codyn).
This is a real problem that earlier versions of codyn did not properly address.

To solve this, codyn keeps track of all calls to rand and transforms these to special instructions
which will always return a cached version of their current random value. These cached random
values are then updated at every integration step. Thus, if for example a variable is defined
as v = rand(), then within the same integration step all references to v will observe the
same random value. The random number generator used in the network can also be seeded
externally such that results can be easily reproduced.

Referencing variables

Named variables can be referenced by name in any expressions. For expressions in nodes,
variables are always resolved first in the same node, then in the parent node, etc. For edges,
variables are first resolved in the edge, then in the input node of the edge, and then in the
parents of the edge. Variables can also be referenced in child nodes by using a dot syntax (e.g.
child.v).

Matrix indexing

codyn supports indexing of matrices and vectors. Table 2.3 lists the various types of indexing
that are supported. Unlike some popular languages, indices in codyn start at 1.

Table 2.3 — Matrix index operations

Syntax Description

Aln, m] With n 1-by-1 and m 1-by-1, indexes row n and
column min A

Ali] With i 1-by-1, linearly indexes A in column major
order

Alr, c] With r n-by-1 and ¢ 1-by-m, indexes the cross sec-
tion of row indices r and column indices ¢

Al c] With ¢ 1-by-m, indexes the cross sections of all rows
and column indices ¢

Alrp:re,cl With ry, 1-by-1, r, 1-by-1 and ¢ 1-by-m, indexes the
cross section of row indices r to r, and column
indices ¢

A|[B] With B n-by-m, linearly indexes A in column major

order and returns an n-by-m matrix

19

Chapter 2. Dynamics

User functions

Apart from variables, nodes can also contain user defined functions. These functions consist of
a mathematical expression which resolves its variables in its named arguments. Once defined,
user functions can be called in the same way as built-in functions are called. User functions
cannot produce side-effects (i.e. they simply return the value of their expression), but they can
resolve variables and other functions from the context in which they are defined.

Symbolic math

codyn implements a small number of symbolic operations. In cédyn jargon, these are called
operators, since they operate on symbolic expressions. Symbolic operators receive one or more
expressions which they are free to operate on. They then return a function, implementing
the symbolic operation, which can be called like any other function. Table 2.4 lists the most
important operators available.

Table 2.4 — Symbolic operations

Syntax Description

dt [expression, n]() Calculates the n' time derivative of the provided
expression.

v, v Shorthand syntax to obtain the respectively first,

second, etc. time derivative of a variable v (i.e.
equivalent to dt [v](),dt [v,2](), etc.)

diff [f,n; vy, v0,...](args...) Obtain the n™ symbolic derivative of the user func-
tion f, towards the variables (function arguments)
V1, Uy, etc. The resulting function represents the
derivative of f and can be called with the same ar-
guments as [

pdiff [f, n;v](args...) Obtain the n™ partial symbolic derivative of the
user function f, towards the variable (function ar-
gument) v.

olf, n; vl(args...) A shorthand notation for the partial derivative op-
erator.

delayed|expression, init](dt) Provides a dt delayed version of the provided

expression. The init expression is optional and is
used to initialize the delay history (which is 0 if
not specified). The init expression can reference ¢
which will run from #pegip, — dt t0 tpegin

Note that the symbolic derivation in codyn is deeply integrated into the mathematical engine.
This means that derivatives are properly propagated, can be taken on user defined functions
and arbitrary expressions. Time derivatives properly take into account the special time variable
t and properly use the differential equation of a state variable as the time derivative if required.

20

2.2. Core concepts

2.2.3 Edge projections

All differential equations in the system, i.e. the derivatives of all state variables, are written
as mathematical expressions operating on state variables through edges. Conceptually it is
useful to think of differential equations as the projected rate of change of a state variable.
Edges in the network graph project these rates of change, which they encode, towards state
variables in nodes in the system. More than one edge can project a differential equation on
the same state variable. The resultant true differential equation is then simply the sum of all
the individual projections.

Direct projections

Apart from projecting onto state variables, edges can also project onto normal variables. Since
nodes implement the concept of data encapsulation (they cannot directly inspect data from
other nodes), direct projections can be used to transfer data from one node to another. This
has exactly the same effect as accessing variables from other nodes directly, except that the
relationship between the nodes is now encoded by its edges. This makes it clear where data
between nodes comes from in a structural manner. An example where this is useful is when
integrating external data sources into a codyn network. A special node can contain variables
representing external data (such as sensor values) which can then be directly projected to all
nodes requiring that information.

2.2.4 Events

Dynamical systems are not always modeled as one single continuous system. It is not uncom-
mon for a single dynamical system to instead be modeled as several systems with different
dynamics, and a switching mechanism to transition from one system to another (for example
rigid body with contact dynamics). These types of discrete, or hybrid, dynamical systems
are supported in codyn by means of a built-in event system. Events are embedded inside
nodes and allow a transition from one or more event-states of that node to another when a
specified condition becomes true. Additionally, events can cause discrete changes in variables.
This is used to allow implementation of changes in states over the horizon of the event (see
section 2.6.10 for an example of how this is used when implementing hard contacts for Rigid
Body Dynamics). Finally, differential equations can be associated to be only active when the
corresponding input node of the edge is in one or more particular event-states, thus allowing
for different dynamics during different states of the simulation.

Event refinement

Events can be activated by simply observing the condition at every simulation step, but it can
sometimes be important to be more precise about the exact time at which the event condition
transitioned from false to true. Having inaccurate event timing can lead to inaccuracies in the

21

Chapter 2. Dynamics

simulation (for example energy loss) since part of the dynamics are incorrectly simulated or
can lead to penetration errors in contact modeling. In codyn this is called event refinement
which can be enabled for each event individually. To refine events, a maximum allowed error
on the transition condition of an event can be specified. The logical condition expression is
decomposed into a binary tree where each non-terminal node is a logical operator (i.e. <,>
,<=,>=,]],&&), and each terminal node is a mathematical expression with a non-logical root.
The logical operators <, >, <=, >= are transformed such that their zero-crossing (from negative
to positive) indicates that the event condition activated during the current integration step.
This can be done simply by replacing the logical operator with a subtraction (and reversing
left and right hand sides for < and <=). If we indicate this transformation by Z;(a), with i
the integration step and a the logical expression, then we can say that the event activated
when Z;_1(a) <0and Z;(a) >=0 (or Z;_1(a) <=0 and Z;(a) > 0 in the case of the <= and >=
operators). In other words, the event activates when Z undergoes a positive zero-crossing.
From this representation, we can also directly obtain a linearized estimate of the time step
At.(a) required to obtain an exact event condition, as given in equation 2.7.
—Zi—1

Aty(@) = —— "L A¢ 2.7
O r@-zia@ @

For the || operator we can simply check if either of its operands had a zero crossing. Similarly,
for the && operator we check if 1) the left hand side has a zero crossing while the right hand
side is positive, 2) the right hand side has a zero crossing while the left hand side is positive or
3) both left and right hand sides have a zero crossing. The estimated At, of the operand for
which a zero crossing occurred is propagated upwards in the binary tree. If both operands
underwent zero crossings, then the smallest Az, is propagated.

2.2.5 Numerical integration

Numerical integration is one of the main uses of codyn for dynamical system modeling. For
this purpose, codyn provides a flexible and extensible numerical integration infrastructure
with different numerical integration methods. Special care has to be taken to evaluate the
various features of the network, handling differential equations, events and random numbers
in the right order. The general integration procedure is shown in table 2.5.

Only steps 5) and 6) are specific to the type of integrator used. This makes it easy to provide a
variety of different numerical integrator schemes, which are only concerned about computing
the derivatives and numerically integrating the states, without needing to know about any
codyn specific internal features. A basic variety of built-in integration schemes, including Euler,
Runge-Kutta 4 order, Leap-Frog and Correction-Prediction are implemented and provided
(Butcher, 2008). Furthermore, new integrator types can be easily implemented and loaded
through the use of plug-ins. cédyn currently does not provide adaptive time step integrators,
although they could be easily implemented. The reason is that it is often preferred to have

22

2.3. Modeling language

guarantees on execution time, which adaptive time step integrators do not give. However,

they do provide more accurate integration and can be better suitable for systems with specific

behavior (such as stiff systems). It would therefore be interesting to provide adaptive time step

integrators in the future.

Table 2.5 - Integration procedure

1) Compile all the equations in the network

2) Collect all state variables, discrete variables, edge projections, events and random
number instructions

3) While ¢ < endtime

1)
2)
3)
4)

5)

6)

7)
8)

9)

10)

Store current event condition expression values
Generate a new set of random values for all rand instructions
Store the current values of all state variables

Update all symbolic math operators (for example, compute and store delayed
history)

Evaluate all active edge projections on state variables with the selected integrator
to compute the state derivatives

Numerically integrate all state variables with the selected integrator, using the
computed derivatives from the previous step

Evaluate all active edge projections on discrete variables

Discretely integrate all discrete variables using the values obtained in the previous
step

Evaluate all event conditions and determine which events were activated by the
current integration step. For all activated events, determine (if any) the small-
est requested event refinement. If there is an event refinement then, restore the
previously saved state (from step 3)) and continue from step 5).

Execute all activated events, evaluating discrete changes to variables, updating the
event-state of the nodes to which the events belong and updating the active set of
edge projections according to the new event-state

2.3 Modeling language

The previous section gave a conceptual overview of the codyn framework for dynamical

modeling, but did not yet show how the actual modeling in codyn is done. Domain specific
languages, or DSLs, are special purpose computer languages developed to address problems

23

Chapter 2. Dynamics

in a specific domain. This is in contrast to general purpose programming languages which
are able to solve problems in any domain by means of general, instead of specific, constructs.
The advantage of a domain specific language is that it can be tailored to fit the problem
domain exactly, leaving out constructs that are not required, thus resulting in smaller and
easier to understand languages. At the same time, anything outside of the domain or its
conceptualization will be harder to express than it would normally be in a general purpose
language.

In earlier versions of codyn, models were specified using an XML derived format. XML is
very much a general purpose markup language which can be used to describe any type of
hierarchical model, and is commonly used for defining models in existing modeling tools (for
example). In this format, every part of the model had to be explicitly written down and,
due to the nature of XML, this quickly led to very large and hard to maintain models. It became
clear that although the codyn framework provided useful concepts and tools for dynamical
systems modeling, the manner in which these models needed to be written down was lacking
and hindered adoption.

The codyn modeling language is a declarative DSL tailored towards the specific concepts
described in the previous section. It allows for concise expression of complex, coupled dy-
namical models in an easy to learn language. Making the language declarative, as opposed
to imperative (or functional), is a natural paradigm for modeling. I. e. models are described
by their structure rather than as a series of steps. This makes them easier to reason about,
analyze and manipulate. Not only is this important because it makes the modeling easier, it
also allows for writing tools that can automatically analyze, transform and optimize models,
which would otherwise be difficult if not impossible. Section 2.7 shows in detail how models
can be automatically optimized for performance, while section 2.8 explains how various tools
are built to work with codyn models.

In the remainder of this section the specially developed codyn modeling language is described
in detail. Each feature of the language is accompanied by examples of increasing complexity
to show how it can be expressed in the codyn language.

2.3.1 Variables and simple differential equations

The basic building blocks of a codyn model are nodes, edges and variables. An empty document
represents the top level codyn network, which conceptually is just like any other node, except
that it does not have any parent node. To define variables in a node, the following syntax can
be used:

24

http://wiki.ros.org/urdf

2.3. Modeling language

Position of the point mass
y =1

Gravity
g = 9.81

Mass
m= 0.6

External force
f =0

Acceleration
a="-g+f / m"

Note that the definition of a variable consists of a name, followed by =, followed by the ex-
pression for that variable. Simple numerical values can be specified directly (9.81), but more
complex expressions must be enclosed in double quotes "like so".

This network in itself is not that interesting, since it does not specify any dynamics of the
system. The acceleration of the point mass is defined, but just as a normal variable. To define
a differential equation instead, we can use the following syntax:

Initial position of the point mass
y = 10

Gravity
g = 9.81

Mass
m= 0.6

External force
f =0

Acceleration
y="-g+f /[m"

Or alternatively
vy’ = "g+f/n

The simple statement in the example above has several important and interesting implications.
First, cadyn is a Unicode aware language. This means that we can use Unicode characters in
names, so writing + = 2 is perfectly valid in codyn. Furthermore, codyn has Unicode syntax
support for a few operations allowing to write models closer to their mathematical form.
To write differential equations, codyn supports the Unicode combining dot and double dot
characters, i.e. one can write y to define a first order differential equation, or j for a second
order equation. It is not always convenient to write equations in this way, so codyn also
supports a alternative prime (y’’) syntax for the same purpose.

The second important implication is that although codyn internally only supports first order
differential equations, we can easily still easily write n™ order models. codyn automatically

25

Chapter 2. Dynamics

transforms the model in a series of equivalent first order equations. If we inspect the generated
internal model, we can see that it has been transformed to the following equivalent form:

codyn model 2.1 — Accelerating point mass [play]

y = 10

g = 9.81
m= 0.6
f =

New, automatically created differential equation for position
v’ o= "dy"

New, automatically created state variable for velocity
dy = 0

Acceleration as differential equation for velocity
dy’ = "—g + f / m"

The final implication is that although the example above does not define any edges, differential
equations are always necessarily defined on an edge. Recall from section 2.2.1 that every node
contains a special edge for which the input and output are set to the node itself. Using the
prime syntax inside a node, we have defined a differential equation on the self-edge of that
node (in this case the network itself). Figure 2.2 shows the value of y over time when simulating
this trivial network.

‘
0, |
E y
Ew f ()
:
o
[t
—100 |- s
| | | | | |
0 1 2 3 4 5
Time (s)

Figure 2.2 — Left: System output of a simple point mass accelerating due to gravity. Right:
conceptual representation of a self-edge

2.3.2 Nodes

Nodes become useful when we want group variables (and other nodes) in a self-contained
subsystem. Defining nodes in the codyn language is done using the syntax shown in model
2.2,

Just as with the top-level node, we can define variables inside the newly defined nodes. All

26

http://play.codyn.net/d/LqKZ7hjb8W

2.3. Modeling language

codyn model 2.2 — Two accelerating point masses with friction [play]

Global gravity,

g=09

.81

Define a single node named n1

node
#

y

"n1" {
Position of the point mass
= 20

Mass
= 0.6

External force, air friction
= "_dy"

Acceleration

y
}

Def
node
#

y

y

'e 2 v_g t f [m"

ine a single node named n2
"h2t g
Position of the point mass
= 8

Mass
= 0.4

External force, air friction
= "—dy"

Acceleration
s g 4 f [m"

accessible from child nodes

variables defined as such are locally scoped to the node. Variables from parent scopes can also
be accessed, which is shown above by having the nodes access the globally defined gravity

variable g. Figure 2.3 shows the result of simulating this network.

20|
g 10
=)
2
2 ol
[aW)
_10,
| |

— N1,y
n2.y

2

Time (s)

3

Figure 2.3 — System output of two simple point masses accelerating due to gravity and simple
air friction.

27

http://play.codyn.net/d/RkRyYcDnYf

Chapter 2. Dynamics

2.3.3 Edges

Having defined nodes, we can now implement coupling between state variables in different
nodes using edges. The syntax for adding an edge can be seen in model 2.3. In this example we
take the same network as defined before in model 2.2. We now introduce coupling between
the nodes modeling an additional term to the acceleration of both point masses due to a
bidirectional spring connecting the two.

The syntax for creating an edge is:

edge "name" from "input—node" to "output—node" {

}

The name of the edge is optional, and if left out a unique name will be automatically generated
for it based on the names of the input and output nodes. When an edge is declared, special
attributes can be applied to it making certain constructions easier than they would otherwise
be. In model 2.3 we use the <bidirectional> attribute to automatically create a reverse edge
without having to explicitly define it. Figure 2.5 shows the graphical representation of the
network so created.

If we look at the output of this system in figure 2.4 we see that the output starts to already be
slightly more interesting. The coupling makes it such that the point masses start to oscillate
around each other while accelerating downwards. The simulated air friction cause the oscilla-
tions to dampen out, resulting in the two masses accelerating together towards the end of the

20 |- — N1,y [
\ n2.y

simulation.

Position (m)

—-10 ! ! ! ! ! ! =

Time (s)

Figure 2.4 — System output of two simple point mass accelerating due to gravity and undergoing
forces from air friction. Additionally, the two point masses are coupled by a bidirectional
spring.

2.3.4 Generators and selectors

Although we are getting somewhere at this point with simple models, some of the examples
already show a certain amount of duplication of effort. Ideally we should be able to declare

28

2.3. Modeling language

codyn model 2.3 — Coupling by a spring between two point masses [play]

g = 9.81

node "n1" {

y = 20

m= 0.6

£ o= "_dy"

vy’ = "_g+ f [n"
}
node "n2" {

y =8

m= 0.4

Fo= "—dy"

y'' = "g+ f [m"

}

Create a bidirectional edge between the two nodes implementing

a simple, bidirectional spring, applying a force resulting in

additional acceleration

<bidirectional>

edge from "n1" to "n2" {

Stiffness of the spring. Variables can be defined inside edges
as well and allow for convenient definitions of constants and
temporary expressions.

= "g"

R H H H

Additional acceleration due to the force of the spring. Note
that we have to apply the acceleration to the differential
equation of the velocity from inside the edge.

y’ += "K *x (input.y — output.y) / output.m"

a H# H B

(y]) K(y1=y2)/my (yZ)
— ~a

K(y2 —y1)/my

Figure 2.5 — Graphical representation of a network of two coupled point masses.

models in a more concise manner. One of the central concepts in the language that enable
this is that of generators and selectors. These concepts are important because it makes the
modeling language both expressive and powerful.

Generators are a special construct in the language which allow to quickly generate multiple
names at the same time. Generators can be used anywhere in the language where names or
identifiers are expected, such as when declaring nodes, edges, variables etc. Generators are
always embedded inside strings, and are enclosed by curly braces. When parsed, they are

29

http://play.codyn.net/d/NsSYAc6PHj

Chapter 2. Dynamics

expanded in a combinatorial way, allowing nesting of multiple generators in the same name.
In addition to generating multiple names, generators also support embedded calculations,
mapping and reducing (see table 2.6).

Table 2.6 — Supported generator syntaxes

Syntax Description
"n{1:3}" Generate the names n1, n2, n3
"$(expression)" Performs an embedded calculation of the provided expression

"n{1:5/$(@0 = 2)}" Make a new generator by mapping each value using an expres-
sion. Values can be referred to by @0. The result of the provided
example would be a generator for the names n2, n4, n6, n8
and n10

"{1:3]]@® + @1)}" Reduce a generator to a single name by successively applying
the provided expression, substituting @0 with the first and @1
with the second value. The result of the example would be a
single literal value 1 + 2 + 3

Model 2.4 shows the same model as defined in 2.2, this time using generators to generate
the two nodes at the same time. As shown, without loss of expressiveness, the model is now
more concise while still easy to understand. It is now easier to start modeling more complex
systems.

codyn model 2.4 — Basic generator syntax [play]

g = 9.81

Define two nodes at the same time, nl and n2, by using generator syntax.
This creates the two nodes in parallel. Definitions 1inside their scope
now apply to both nodes at the same time.
node "n{1:2}" {
Inside, we can still declare separate values for each node, by
using a square bracket syntax
y = ["10", "8"]
Mass
m = [0.6, 0.4]

External force
f=0

Acceleration. The same for both nodes.

s

y’’ = "-g+ f /[m"

Model 2.5 shows what we can do now. This example models a system of 10 nodes each with
two state variables, x and y. All nodes get accelerated downwards on y due to gravity while
a second external force is being exerted. Additionally, the first node on both right and left
sides is modified to add a force coming from a spring connected to the fixed frame. Finally, all
nodes between the right and left side are coupled bidirectionally, such that a spring acts on

30

http://play.codyn.net/d/B7IXkn9G8e

2.3. Modeling language

both the x and y states, pulling the point masses of the right and left side towards each other.
Figure 2.6 shows the output of this system (a quasi-chaotic regime), while figure 2.7 shows the
conceptual representation generated by this model definition.

codyn model 2.5 — Generating many nodes and edges using generators [play]

g = 9.81

node "n{1:5}{r,1}" {
m= 1.5

Generator syntax also applies to variable names
"Ix,y}" = "rand(-5, 5)"

External force implementing damping (due to friction)
Dy = 0.5
Fy = "—Dy = dy"

Acceleration due to gravity plus external force
L

y = "-g + Fy / m"
}

We can open up existing nodes and modify them. Here
we will add a simple fixed spring to the first node on
both left and right sides
node "ni{r,1}" {
Ky = 10

Set external force to damping plus a spring force
pulling back the point mass to 0
Fy = "-Dy * dy + Ky * —y"

}

This generates full coupling between the left and right
nodes
<bidirectional>
edge from "n{1:5}r" to "n{1:5}1" {
Kx = "5"
Ky = "20"

dx’ += "Kx * (input.x — output.x) / output.m"
dy’ += "Ky * (input.y — output.y) / output.m"

Contexts and expansions

When generators are used, they generate a so-called expansion context which can be accessed
within their defining scope. Expansion contexts can be referenced in the codyn language using
@n syntax, where n is a number referring to a specific group in the expansion context. The 0
group is always the full generated name, while groups 1 to n refer to curly brace expansions in
order of occurrence. Model 2.6 shows the basic usage of referring to expansion contexts.

31

http://play.codyn.net/d/gC9G2EImtn

Chapter 2. Dynamics

—_ 0 -
g
o
S
%‘ -10 |
o
[aW}
_20 |
| | | | | |
0 1 2 3 4 5
Time (s)

Figure 2.6 — System output of a densely coupled system of point masses.

.
B
4 o
AN
. o . .
. S AR . A
. H O NN .
o No o
ot
RS
.
o w
) .
..
R
By
.
B
. O
.
.
3 3
kA s
Ve
-,
0
343
. .
0
kY W
B o
. . B
o
DAt
R RS
o* Cee
. . D 3 . o
. = o0 .
. . . o .
. = . . h
. P ’ d -
gy Q4 . .
o
.
. . P
. .
/ "

Figure 2.7 — Conceptual rendering of a network of a densely coupled system of point masses.
The simple model definition in model 2.5 using generators demonstrates the generative
abilities of the codyn language.

Selectors

Where generators allow for the creation of new elements in the model, selectors on the other
hand allow for referring to one more existing elements in the model using a selection pipeline.
They can be used to select a subset of existing elements based on certain criteria (for example

32

2.3. Modeling language

codyn model 2.6 — Use of expansion contexts [play]

node "n{1:3}" {
Here we can access @0 which gives respectively nl1, n2 and n3.
We also have @1 available, resulting in 1, 2 and 3 respectively

**

Note that since ‘v’ is a name that itself generates a context,

we need to access the second level expansion context by using @@

in its value to access the 1, 2, 3 expansions from the node name.
The $() syntax evaluates an inline calculation which is evaluated by
the language parser at compile time.

= "$(@@1 * 2)"

< H H B H R

matching name or having a certain variable). Selectors are useful to open existing elements
and partially redefine them, or to select input and output nodes for edges.

Selectors are defined as pipelines, where the output from the previous selector serves as input
to the next selector. Each element of the pipe line transforms the input it receives to produce a
new set of elements. To select on names of elements (for example a node name), generators or
regular expressions (enclosed in) can be used as pipeline elements. The initial input to the
selector pipeline is defined by the current modeling context the selector is used in.

Table 2.7 lists some of the most commonly used selectors. Model 2.7 shows some examples of
how these selectors can be used to select nodes based on various selection criteria.

2.3.5 Templates

When there is common functionality to be shared between multiple nodes or edges, templates
can be defined and inherited from. This provides a useful abstraction of functionality that can
be applied to multiple nodes and allows for building libraries of functionality which can be
consumed by various models. Templates are defined in a special block in the network. Model
2.8 shows the basic usage of templates.

2.3.6 Integrator

The type of integrator to use when numerically integrating the network can be specified in a
special, top-level integrator block. The default integrator is Euler and the default time step is
set to 1 millisecond. Model 2.9 shows the basic usage of the integrator block.

codyn model 2.9 - Specify the type of integrator [play]

integrator {
"The" Runge Kutta method, which refers to the 4th order RK.
method = "runge—kutta"
default—timestep = "0.01"

33

http://play.codyn.net/d/V64ruLnviS
http://play.codyn.net/d/95ubZTQxlw

Chapter 2. Dynamics

codyn model 2.7 - Basic selector syntax [play]

Define some nodes n1_left to n3_right
node "n{1:3}_{left,right}" {
}

Open previously defined nil_right to n3_right nodes using a regular expression
node /n(.x)_right/ {

Define a variable v on which we can later select

v =1

}

Create an edge between all left and right nodes with matching names
using a regular expression selector and generator selector
edge from /(.x)_left/

to "@1_right" {3}

Create a reverse edge for each pair of nodes which already have
a connecting edge. This has the same effect as using the
<bidirectional> attribute
edge from nodes | if(inputs) | name
to @ | inputs | input {}

€,

Select nodes which do not yet have a variable named ‘v’ and
define a variable ‘v’ with a different value in it
node not(children | variables | "v") {

v = 2

}

codyn model 2.8 — Templates [play]

templates {
node "pointmass" {

m=1
f=0
y'' = "g+ f /[m"

edge "spring" {
K = "5"
dy’ += "K % (input.y - output.y) / output.m"”

}

Construct 5 nodes inheriting from pointmass
node "n{1:5}" : "pointmass" {}

Construct edges between neighboring nodes, applying the
spring template to each edge

<bidirectional>

edge from "n{1:5}" to "n$(@1 + 1)" : "spring" {}

2.3.7 Events

When modeling hybrid dynamics, events can be used to switch between different states of
the system effectively using condition expressions. In the language, events are expressed by a
special block which configures:

34

http://play.codyn.net/d/53LkMz2pVQ
http://play.codyn.net/d/kq12eYGBkx

2.3. Modeling language

Table 2.7 — List of common selectors

Selector Description

root Select the root network

children Select the direct children of objects in the selection.
Children include child nodes and variables

parent Select the parent node of each object in the selec-
tion

first Select the first object in the selection

last Select the last object in the selection

edges Filter the selection keeping only edges

nodes Filter the selection keeping only nodes

variables Filter the selection keeping only variables

input Select the input node for each edge in the selection

output Select the output node for each edge in the selec-
tion

inputs Select all edges projecting onto each node in the
selection

outputs Select all edges projecting from each node in the
selection

name Add an expansion context with the name of each

has—template(selector)

object
Filter objects having the template specified by the
provided selector

recurse(selector) Recursively apply the specified selector to the se-
lection

if(selector) Filter selection keeping only elements for which the
provided selector results in a non-empty set

not(selector) Filter selection keeping only elements for which the
provided selector results in an empty set

generator Filter selection based on element names

/regex/ Filter selection based on matching element names

to the specified regular expression
Pipe input from the previous selector to the next
Shorthand syntax for | children

In which event-states the event is active

To which event-state the event transitions its containing node

The condition for which the event should be activated

Whether or not any event refinement should take place

A

Any discrete variable changes to be executed when the event activates

Model 2.10 shows the model specification of simple bouncing pogo-point masses (each point
mass is on a virtual spring/damper pogo stick). Each pogo-point mass can be in one of two

35

Chapter 2. Dynamics

codyn model 2.10 — Basic usage of events [play]

integrator {
method = "runge—kutta"

}

templates {
node "pogopoint" {

nasen

initial-state "air

pogolength = 0.1
bounced = 0

= 1000
=1

O X3
I

Spring force of the ball when it is being compressed
fspring = "K % (pogolength — y)"

Damping force of the ball when it is being compressed
fdamping = "-D % y’"

Acceleration of y due to gravity

I " "

y = -9

Acceleration of y due to the spring and damping force.

This

term is only active when the pogo stick is in contact with

the ground

]

y = "(fspring + fdamping) / m" state "ground"

Transfer from the air to the ground when y becomes smaller than

the pogo stick length

event "air" to "ground" when "y < pogolength" within 0.001 {

Keep track of the number of times we bounced
set bounced = "bounced + 1"

}

Transfer from ground to air when y becomes larger than the pogo

stick length

event "ground" to "air" when "y > pogolength" within 0.001 {}

}

}

g = 9.81

node "p{1:3}" : pogopoint {
y = "rand(1, 3)"
m=[0.6, 0.3, 0.4]
K = [1200, 500, 600]
D= [1, 1.5, 1.8]

}

states, in the air or in contact with the ground. When in the air, the pogo-point mass is only
subject to gravitational forces, accelerating it towards the ground. As soon as the pogo stick
touches on the ground (i.e. when y < pogolength), the state of the node is changed to the
ground state. In this state, the pogo-point mass is subject to an additional acceleration term

due to the spring and damper of the pogo stick.

36

http://play.codyn.net/d/HgvZUgyHCS

2.4. Example I: Central pattern generators

Figure 2.8 shows the output of this system. As can be seen, the pogo-point masses correctly
show damped bouncing trajectories as expected. Errors on the exact time of contact are kept
small by the event refinement which refines the timestep until the error of the event condition
zero crossing (y < pogolength) is smaller than 0.001.

— pl.y
p2.y
. 21 —p3.y ||
g
)
=
a‘ 1+ |
o
[
0 | |
| | | | | |
0 2 4 6 8 10
Time (s)

Figure 2.8 — Output of multiple pogo-point mass dynamics with various initial conditions,
masses and spring/damper characteristics.

2.4 Example I: Central pattern generators

The examples of systems modeled in codyn shown until now explain individual system fea-
tures well, but the systems themselves are somewhat contrived. One type of real dynamical
systems for which codyn is very suitable as a modeling tool are central pattern generators.
“Central pattern generators (CPGs) are neural circuits found in both invertebrate and vertebrate
animals that can produce rhythmic patterns of neural activity without receiving rhythmic
inputs” (Ijspeert, 2008). We will focus here on their mathematical modeling and choose an
abstract (instead of a neurological) representation of the CPG. There are a number of well
known abstract oscillator models that are widely used to model the dynamics of oscillatory
systems with interesting characteristics. For example, the Hopf oscillator is governed by the
following differential equations in Cartesian coordinates:

i=y(u-r>)x-wy (2.8)
y=y-r)y+ox 2.9)

F=q/x2 +y2, (2.10)

with state variables x and y, angular frequency w, desired oscillation amplitude /g and y
being a constant dictating the speed of convergence to the limit cycle of the oscillator. We
can also write down the equations of the Hopf oscillator in Polar coordinates, providing an

37

Chapter 2. Dynamics

alternative model for the same system:

b=w (2.11)
F=y(u—rr, (2.12)

with state variables ¢ (phase of oscillation) and r (amplitude of oscillation). These two systems
are exactly equivalent and only differ in their representation of coordinates to express it.
Representations however are important. In Cartesian coordinates, the Hopf oscillator can be
modified to be frequency coupled with external oscillatory signals (Righetti and Ijspeert, 2006).
On the other hand, the Polar coordinate representation allows for much more straightforward
coupling of the phase of two or more oscillators. One commonly used coupling on the phases
of oscillators in Polar coordinates is the following:

$ij=wijrisin(p;—P;—0;j), (2.13)

where ¢; j is the coupling term from oscillator i to j and is added to the differential equation
of ¢ ;. w;j is the coupling strength, r; is the amplitude of oscillator i, ¢; and ¢ ; are the phases
of respectively oscillator i and j, and 6;; is a phase bias at which the two oscillators should
synchronize. Note that this coupling is diffusive (i.e. it disappears when the two oscillators are
in synchrony). The coupled system can now be represented as:

hi=w; + (2.14)

Fi=Yilpi = 2.15)

The system from equations 2.14 and 2.15 can be modeled by writing down the isolated oscilla-
tor systems first as a single node with two state variables. Then, we introduce edges to couple
the individual oscillators. Model 2.11 implements such a model of 5 oscillators with nearest
neighbor coupling. The phase bias 60;; is set such that the 5 oscillators combined represent
one full traveling wave. The coupling is furthermore symmetric (bidirectional) and consistent
(i.e. 0;; = —0;; in this case). Figure 2.9 shows how this system behaves when simulated. As
can be seen, the phases of all oscillators start out with random initial conditions, but quickly
converge to their desired phase locked behavior.

2.4.1 Vander Pol

Various other popular types of oscillators are easily modeled in cédyn as well and provided as
part of the standard library of codyn. Model 2.12 shows basic templates for the Van der Pol
oscillator. Here it can be seen that codyn also makes it easy to make templates inherit from
each other to create new nodes that slightly alter existing functionality. This allows for the
creation of families of systems in modular ways.

38

2.4. Example I: Central pattern generators

codyn model 2.11 — Basic network of coupled Hopf oscillators [play]

templates {
node "polar_hopf" {

f=1
omega = "2 % pi * f"
p’ = "omega"
mu = 1
gamma = 5
o= "y
r’ = "gamma * (mu — r”2) * r"
Xx = "r % cos(p)"
}
edge "polar_coupling" {
bias = 0
weight = 1
p’ += "weight * input.r % sin(input.p — output.p — bias)"

FIa]

Define a macro
defines {

n Its value can be used later using the @n syntax.

no= "ge
}
node "h{1:@n}" : polar_hopf {
p = "rand(-pi, pil)"
r = 0.001
}
<bidirectional>
edge from "h{1:@n}" to "h$(@1 + 1)" : polar_coupling {
s = [-1, 1]

bias = "s « $(2 = pi / @n)"

codyn model 2.12 — Van der Pol oscillator templates [play]

templates {
node "van_der_pol" {
mu =5

X = "1"
x’? = "mu % (1 — x"2) % x’ — x"
}
node "van_der_pol_forced" : "van_der_pol" {
A =1
P’ = "2 % pi"
X’ = "mu * (1 — x72) x x’ — x + A x sin(p)"
}

39

http://play.codyn.net/d/hy3Sxadjt1
http://play.codyn.net/d/Oe6Z0FzIuD

Chapter 2. Dynamics

T
1 ,\ B
E
g o0 |
2
(@]
2 4
/
_1 / |
| | | | | | | | |

Time (s)

Figure 2.9 — Output of a basic system of phase coupled Hopf oscillators. The 5 oscillators are
initially not phase locked, but quickly converge to their desired phase locked behavior

2.4.2 Matsuoka

Another popular oscillator, especially in robotics, is the biologically inspired Matsuoka oscilla-
tor. The model for this oscillator resembles a neuronal circuit where oscillation occurs by the
mutual inhibition of two neurons. The basic differential equations that govern this system are
the following:

TiX1=c—x1-pri—ay (2.16)
T2U1=)1— 11 (2.17)
i =c—X2—Pra—ay (2.18)
TolU2=Y2— V2 (2.19)
yi =max(x;,0) (2.20)
y=y1-)2 (2.21)

To model this oscillator, we can separate the equations and first model the individual neurons
without their coupling. We then introduce a bidirectional edge between the two neurons
which implements their mutual inhibition. Finally, we can embed this system inside a new
node which represents the final Matsuoka oscillator. The oscillator state is calculated in this
new node from the output of the two neuron nodes. Model 2.13 shows a basic implementation
of this idea.

2.4.3 Morphed nonlinear phase oscillator

One of the difficulties with working with the previously mentioned oscillator dynamical
systems is that it is often hard to design them such that they exhibit a desired output pattern.
In robotics in particular, oscillators (if used) often drive actuators (for example provide input
to a position or torque controller). While the intrinsic properties, such as a stable limit cycle,

40

2.4. Example I: Central pattern generators

codyn model 2.13 - Matsuoka oscillator template [play]

templates {
node "neuron" {
y = "max(x, 0)"

"rand(-0.1, 0.1)"
"rand(-0.1, 0.1)"

X
i n

x’ "1 / tau * (c — x — b *x v)"
"1/ Tau = (y — v)"

node "matsuoka" {
a o

b = "2n
c = "1"
tau = "0.1"
Tau = "0.1"
node "neuron{1,2}" : neuron {}

<bidirectional>
edge from "neuronl" to "neuron2" {

x’ += "-1 [/ tau % a x y"

}

x = "neuronl.y — neuron2.y"

of these oscillators are of interest, it becomes important to be able to accurately control the
shape of oscillation as well.

In Ajallooeian et al. (2013) we developed a family of nonlinear oscillators with characteristics
which make it easy to design oscillators with arbitrary limit cycle shapes. The principal idea
is to use a base oscillator with an existing limit cycle, and morph it through the use of a
shaping function to a new, desired limit cycle shape. One of the simplest realizations of such
an oscillator is to take a simple amplitude controlled phase oscillator as the base of the system,
and define a shaping function f(¢p) which provides the desired output signal as a function of
the oscillator phase ¢. The only condition for f(¢) is that it must be differentiable. Considering
the following base oscillator:

dp=w (2.22)
g =v(u—r18), (2.23)

with ¢p the base oscillator phase and rg the base oscillator amplitude, we can write the
realization of morphed oscillator, using f(¢) as a shaping function, as follows:

bs = P (2.24)
fs = uf (Pps) +y(uf(ps) —rs) (2.25)

41

http://play.codyn.net/d/jFzq2FTbYD

Chapter 2. Dynamics

Recall from section 2.2.2 that codyn has full support for symbolic derivation, including user
defined function. We can therefore implement this system in a straightforward manner as a
codyn model. Model 2.14 shows a basic implementation of such a system. It first models the
general morphed oscillator as a template, which can then be realized while specifying a user
defined function for shaping rs.

co6dyn model 2.14 — Example model of a morphed phase oscillator [play]

templates {
node "morphed" {
omega "2 % pi"
mu "1
gamma 1

User defined shaping function. This can be overridden
in realizations of this template

f(theta) = "sin(theta)"
p’ = "omega"
r’ = "mu x f(p)’ + gamma * (mu x f(p) — r)"
}
edge "coupling" {
bias = 0
weight = 1
p’ += "weilght % sin(input.p — output.p — bias)"
}
}
node "m1" : morphed {
f(theta) = "cos(theta * 2 + 0.2 % pi) * (0.1 + sin(theta))"
p = "rand(-pi, 0)"
r==o
}
node "m2" : morphed {
f(theta) = "cos(theta * 2 + 0.2 * pi) * (0.1 + sin(theta)) + 0.5"
p = "rand(0, pi)"
r = -4
}

<bidirectional>

edge from "m1" to "m2" : coupling {
weight = 0.5

}

2.5 Example II: SLIP model

The Spring Loaded Inverted Pendulum model is a very well known and extensively researched
model which describes fundamental properties of running (Seyfarth et al., 2002). The basic
model is relatively simple, consisting of a single leg, modeled as a point mass which under-
goes forces exerted on it from a (preloaded) spring when the (virtual) leg is in contact with
the ground. During the swing phase, the point mass undergoes a purely ballistic motion. A

42

http://play.codyn.net/d/sZ8hMNm1jj

2.5. Example II: SLIP model

—r-‘11.r

5+ m2.r
E
=
.S AV}
£ o /\/\/\/\/\/‘/\/\/‘/\z\/‘/\/\/\/\ |
o
[aW}

_57 | | | | | | | | |

Time (s)

Figure 2.10 — Output of a coupled system of two morphed oscillators with arbitrary shaping
functions. The two oscillators start outside their limit cycle but quickly converge. At the same
time, a bidirectional coupling on the phase ensures phase locking behavior after a short period
of time.

parameter of the model, the angle of attack, determines when the leg touches the ground
during the ballistic motion and with which angle the leg touches down. The dynamics of the
leg during this phase (i.e. swinging the leg forward) are ignored in this model (i.e. the leg is
massless). Figure 2.11 depicts a schematic version of the model.

Figure 2.11 — Schematic depiction of the SLIP model. The basic SLIP model consists of a
single point mass m connected to a massless spring with rest length [. The angle of attack a
determines at which angle the leg transitions from the swing phase to the stance phase during
locomotion.

Even though the model is simple, it can be shown to be self-stabilizing and can be used as a
basis for deriving motion for more complicated legged structures. The model dynamics for
this system can be easily implemented in codyn using events to switch between the hybrid
dynamics of the stance and swing phase. Model 2.15 provides the basic model, using default
parameters for the angle of attack (a = 68°), rest length (I = 1), mass (m = 80) and spring
stiffness (k = 20 kN) obtained in (Seyfarth et al., 2002).

As an example, we will replicate the results obtained from (Seyfarth et al., 2002) where the
number of steps-to-fall is obtained as a function of spring stiffness and angle of attack. We
leave all other parameters fixed (I = 1, m = 80) and vary the stiffness from 0 to 50 kN, and the
angle of attack from 40° to 80°. We then forward simulate the model for each combination

43

Chapter 2. Dynamics

codyn model 2.15 - Spring loaded inverted pendulum [play]

integrator {
method = "runge—kutta"

}
g = 9.81

node "slip" {
initial-state "air"

1 =1 # Spring rest length
aoa = "(90 - 68) / 180 x pi" # Angle of attack

m = 80 # Mass

k = "20000" # Spring stiffness

X =0

y =1

dx = 5

dy = 0
x’? =0
y'r o= g

xc = 0 # Ground contact position. Updated from events.

leglength = "hypot(x — xc, y)" # Current leg length
fspring = "k * (1 — leglength)" # Force of the spring
aol = "atan2(xc - x, y)" # Current angle of attack

steps = 0 # Number of steps taken

Transition from air to ground on leg touch down

event "air" to "ground" when "y < 1 * cos(aoa)" within 0.001 {
set xc = "x + 1 * sin(aoa)" # New contact position
set steps = "steps + 1"

}

Termination condition, falling or more than 24 steps made
event any to terminate when "y < 0 || steps >= 24" {}

Transition from ground to air when spring is fully extended
event "ground" to "air" when "leglength > 1" within 0.001 {}

x’’ = projected(FSpring, X) / m
(-sin(aol) = fspring) / m" state "ground"

a.

x
-
|

y’’ = projected(FSpring, Y) / m
dy’ = "(cos(aol) * fspring) / m" state "ground"

of stiffness and angle of attack and record for each simulation the number of steps made.
Note that the simulations automatically terminate whenever the solution fails (falls down)
or when a maximum number of 24 steps has been reached. Figure 2.12 shows the obtained
characteristic J-shaped result from running this simulation.

We performed the simulation on a grid of 100 stiffness and 100 angle of attack values, using a
Runge Kutta order 4 numerical integrator with a timestep of 1 millisecond. The simulations

44

http://play.codyn.net/d/zgiRBdyEag

2.6. Rigid body dynamics

50

30

20

Spring stiffness (kN)

10|

| | |
040 50 60 70 80

Angle of attack (°)

Figure 2.12 — Number of steps to fall for the SLIP model for different combinations of spring
stiffness and angle of attack using codyn. The characteristic J-shape indicates the stable region
of forward locomotion (Seyfarth et al., 2002).

were run on an iMac, 3.2 GHz Intel Core i3 with 4GB of 1333 MHz DDR3 memory, using codyn
3.6. Evaluating the entire space (i.e. 10000 simulations) took 4 minutes and 38 seconds of real
time with libcodyn, averaging at 0.028 seconds per simulation. In section 2.7 we show in more
detail how we can obtain better performance by developing a special tool to automatically
generate optimized code. Using that tool, we can drastically reduce the total simulation time
to only 6 seconds (i.e. an increase in performance of a factor 45).

2.6 Rigid body dynamics

In the previous sections, most of the physically based examples that were shown were very
simplified versions of real physical systems. It is relatively simple to derive the dynamical
system models for these simplified cases by hand. However, as soon as we start to properly
model inertial dynamics and go from single point masses to articulated rigid bodies, the
system equations become unwieldy very quickly. Even if the differential equations for simple
systems, for example a double pendulum, can be derived by hand, the procedure is error
prone and leads to enormous equations which are very hard to maintain.

When we look at the equations of motion for rigid body dynamics, the general formulation of
the dynamics is given by:

H@)i+C(q,q) =T (2.26)

This equation is written in terms of state variables q and ¢§, which are the generalized coor-
dinates of the system. The term generalized refers to the fact that one is free to choose any

45

Chapter 2. Dynamics

set of coordinates ¢q, g which fully describe the system, and write the equations of motion
in terms of these coordinates. For example, one can describe the equations of motion for an
N-degree-of-freedom manipulator in terms of their relative joint angles or their absolute joint
angles. The resulting models will exhibit exactly the same behavior, but the exact equations of
motion will differ.

In equation 2.26, H(q) is called the mass matrix and C(q,) contains all the forces due to
gravity, coriolis effect and centrifugal effects. 7 is the set of generalized forces that affect the
system. The exact meaning of these forces depends on the choice of generalized coordinates.

The goal of any RBD simulator is then to calculate H(q) and C(q, §) given the RBD model
specification and the current state of the system. Once obtained, equation 2.26 can be used
to either solve for g given 7, or to solve for T given §. The first refers to solving the forward
dynamics and is used to simulate the system forward in time, integrating accelerations and
velocities to obtain motions. The second refers to inverse dynamics in which case all the
motions are known, and one is interested in knowing which generalized forces () would cause
these motions to occur.

codyn has a very unique view on the construction of the equations of motion for rigid body
dynamics. It does not treat the rigid body dynamics differently from any other dynamical
system, and modeling results in a natural treatment of dynamics using codyn concepts. The
main motivations and objectives for providing RBD simulations in codyn are the following:

1. Open: codyn is completely open and free to use. There are no limitations to using or
modifying it. Models can be easily shared and obtained results replicated by anyone.

2. General: the rigid body dynamics are derived generally, and should not impose restric-
tions of the type of articulated systems which can be modeled and simulated. It is as
easy to simulate robotic manipulators as it is to model legged articulated systems.

3. Extensible: an important objective for codyn is to easily allow extending of the derived
equations of motion. The openness and generality objectives support this, but codyn goes
a step further due to the way it treats the rigid body dynamics as any other dynamical
system. This makes it straightforward to add customized joint models, contact models
or additional dynamics.

4. Expressive: a recurring motivation for codyn is to be expressive, without loss of perfor-
mance. Where existing simulators need special purpose, inaccessible (but high perfor-
mance) RBD simulation engines, codyn expresses all dynamics, without exceptions,
in the codyn language. Equations are therefore written close to their mathematical,
textbook form and easy to understand.

5. Fast: codyn explicitly aims to be a fast simulator. Deriving and simulating the RBD
equations of motion in a straightforward and naive way results in very slow simulation
times. Not only does codyn provide the automatic derivation of fast, optimized code, it
importantly does so without loss of generality or expressiveness in the language. Section
2.7 explains in detail how codyn manages this.

46

2.6. Rigid body dynamics

Before we dive into the details of the codyn approach to RBD, we first briefly overview existing
state of the art RBD simulators.

2.6.1 Existing simulators

There are generally speaking two popular, but different methods for solving rigid body dy-
namics. Although both methods are derived from the same laws of mechanical physics, they
greatly differ in the way that they solve for the equations of motion. The first method (re-
ferred to here as constraint-solver RBD simulators), which has been popularized through
simulators originally developed for games (such as ODE, Bullet Physics or Box 2D) is based
on the direct application of Newton’s second law for linear motion and Euler’s second law
for angular motion. They are usually first order simulators (velocity based) which describe
the motions of single bodies independently, and then continue to explicitly add (and solve
for) constraints imposed by joints. This method is in stark contrast to the second popular
method (generalized EoM RBD simulators), which is based on the derivation of the equations
of motion in generalized coordinates. Here, the constraints imposed by the joints are solved for
by describing the dynamics in terms of coordinates that include these constraints implicitly.
The actual constraint forces therefore do not need to be solved for explicitly which leads to
very accurate and stable simulations. Furthermore, having the equations of motion explicitly
derived, simulators based on this method can be used for analysis, control and design.

There has been a recent interest in the development of accurate and importantly opern RBD
simulators which has lead to several new software packages specifically targeting robotics and
research. Some of the important recent developments are briefly discussed here.

ODE/Bullet derivatives

There are many available software packages that use or

as the underlying library to solve for the equations of motion. Both ODE and Bullet
(which itself is a derivative of ODE) are constraint solver RBD simulators. There are many ad-
vantages to this method. Simulations are generally fast, since joints are modeled as constraint
equations which can be solved for numerically very quickly. The method also does not require
computing global system entities, such as the mass matrix, since computations for each body
are done locally and constraints solved for explicitly. Models can therefore also be constructed
very quickly, since no complicated derivations have to be performed to obtain the equations
of motion in a reduced, symbolic form.

There are however certain disadvantages of these simulators which make them largely unsuit-
able for scientific purposes. In particular, since these simulators were designed for gaming
purposes, they allow for certain non-physical phenomena with the sole purpose of stabilizing
the simulation. It thus trades accuracy for speed and stability which can lead to unexpected
results. One known issue is for example that joints can easily drift apart during simulation due

47

http://www.ode.org/
http://www.bulletphysics.org/
http://www.bulletphysics.org/

Chapter 2. Dynamics

to numerical inaccuracies while solving constraints. This problem is addressed by constraint
force mixing techniques that try to stabilize this drift. Nevertheless, this can result in joints
temporarily being separated. It also means that energy can be easily injected into the system
as a side effect. Constraint forces (and by implication contact forces) are therefore unreliable
as estimations of actual physical forces. They represent a solution to the system constraints
but are otherwise non-physical. Finally, since the equations of motion of the full system are
never actually derived, these simulators do not provide any system kinematic (e.g. Jacobians)
or inverse dynamics models and are thus only suitable to simulate forward dynamics.

Because of these reasons, simulators such as ODE and Bullet are a great tool when the sole
interest is to forward simulate systems, i.e. a reasonable realization of RBD to obtain physical
motions and general model validations. They are however a poor solution when one is inter-
ested in deriving dynamics (or kinematics) based control laws, and particularly ill fitted to
perform accurate simulations, derive design principles (e.g. minimum bearing specifications)
or estimate interaction forces.

It should be noted that in a recent development (late 2013), acknowledging the need for
more accurate simulations, in particular for robotics, the Bullet physics engine has developed
support for a special purpose engine based on Featherstone’s articulated rigid body algorithm.
Bullet is therefore no longer solely an excellent tool for introducing RBD in games, but is
interesting also as a tool for research and in particular, robotics research.

The following simulators are all generalized EoM RBD simulators rather than constraint-solving
RBD simulators.

ADAM

is a sophisticated, proprietary, multibody dynamics simulator developed by Msc soft-
ware. It provides state of the art tools for system design, excelling at extremely detailed and
accurate simulations. As an RBD simulator, it is an industry standard and used by for example
large car manufacturers to aid in the design and analysis of complicated mechanical systems.
Designed for the industry, it is however not commonly used for Robotics research. Not only is
it a closed product, simulations are also very slow, due to their great level of detail, and are
focused specifically on industrial design.

OpenSim

Another very interesting and promising dynamics simulator is / (Delp et al.,
2007). Developed at Stanford, it largely focuses on the simulation of musculoskeletal models
used to study biomechanics and rehabilitation. Its primary target is to study human motion,
but it can be used for humanoid robotics as well.

48

http://www.mscsoftware.com/product/adams/
http://opensim.stanford.edu/
https://simtk.org/home/opensim/

2.6. Rigid body dynamics

SimMechanics

SimMechanics is a popular, simulink based simulator developed by Matlab. It is particularly
attractive when the user is already familiar with development of models in Simulink, in which
case modeling of mechanics can be done just as any other system. Of course, Matlab is not
freely available, but it is probably one of the most professional and furthest developed software
package for mechanical simulation used in Academia. Models can be either simulated directly
in Simulink, or compiled to native code which accelerates the simulation time.

Robotran

is an RBD simulator developed by the university of Louvain which uses a symbolic
derivation of the equations of motion based on a recursive Newton Euler formulation (Samin,
2003). Interestingly, it allows for modeling of multiple domains, most notably the mechanical
and electrical domains. It can be used for example to model both the rigid body dynamics and
the motor actuator dynamics in a single, consistent model. Unfortunately, the current version
of Robotran is relatively slow, and depends both on the use of Matlab and relies on an external
server to derive the equations of motion. It can therefore not be used freely. It also supports
only a limited number of joint models (only single DOF rotational and prismatic joints are
supported) and does not provide any sophisticated ground contact models.

MuJoCo

(Todorov et al.,, 2012) is a very recent and promising RBD simulator. It aims to be a
general purpose, fast and accurate dynamics solver, with a particular focus on deriving control
from the rigid body dynamics. It derives equations of motion in general coordinates and has
a state of the art constraint solver to solve for contact dynamics as well as additional, user
defined constraints. Unfortunately, although initially advertised as being released as free and
open software, it has not been made available at the time of writing.

codyn

The philosophy behind codyn is quite different from most other simulators. From the begin-
ning, codyn has been a general purpose, coupled dynamical systems framework. It focuses not
on algorithms in the traditional sense, but instead relies on declarative modeling. Unlike in
most other simulators, which support declaring only model structure, codyn also declares all
computation. This does impose some limitations, since if a problem cannot be solely declared,
it cannot be represented in codyn. However, it also forces to look at rigid body dynamics from
a different perspective.

codyn does not contain any special purpose rigid body dynamics engine. Every and all dynam-
ics are simply declared in terms of physical quantities. There are no additional solvers, nor

49

http://www.robotran.be/
https://www.mujoco.org/\begingroup \let \relax \relax \endgroup [Pleaseinsert\PrerenderUnicode{‎}intopreamble]

Chapter 2. Dynamics

exceptions made to be able to implement rigid body dynamics. Furthermore, the derivation of
the equations of motion is done entirely using the codyn language. The principle is that the
user creates a model description, specifying all necessary quantities such as masses, inertia
tensors, joint types, etc. Hereafter, a codyn file which gets included extracts structure, through
the use of selectors, and completes the dynamics equations by declaring edges to project
quantities in the appropriate locations. The result is a fully declarative dynamics model of the
rigid body dynamics. There are two main advantages, 1) dynamics are considered as a whole,
whether it is rigid body, oscillators or any other dynamics that can be represented in codyn,
and 2) a declarative model allows for rigorous optimizations and high performance difficult to
obtain otherwise.

The remainder of this section provides a detailed overview of the state of the art rigid body
dynamics of codyn.

2.6.2 Deriving equations of motion

There are several different methods for deriving the equations of motion in the form of
equation 2.26. Since they derive the same equation, different methods result in the same
dynamics, but may differ in computational complexity and numerical stability. Two widely
used methods are the Lagrange II and Projected Newton Euler methods.

Lagrange I1

The Lagrange II method is based on the relation between the motions of a system and its
kinetic and potential energies. It is a popular method because derivation of the equations is
relatively simple. The general procedure is shown in equations 2.27 to 2.30.

1 1
T:ZEmii‘iTi‘i+§IiQiTQi (2.27)
i
V=Y -rlf (2.28)
i
L=T-V (2.29)
d (aL)_aL 250
dt\oq) dq '

Given a multi body, articulated, rigid body system, derive equations for the kinematic (T) and
potential (V) energy at the center of mass (r;) for each body in the inertial frame. Furthermore,
F; is the linear velocity of body i and Q; is its corresponding rotational velocity. f; is the total
external force (including gravity) on body i, applied at its center of mass. Then, the Lagrangian
(L) is defined by L = T — V and Lagrange’s equation, stated in 2.30 defines the equations of
motion. This equation can be rewritten to obtain the H and C matrices in the general form.

The elegance of this method is that it is easy to write down the potential and kinetic energies in

50

2.6. Rigid body dynamics

the system. The issue however is that to resolve the actual equations of motion, many partial
derivatives have to be obtained. Although taking a partial derivative is not particularly hard,
problems arise due to the fact that equations quickly become extremely large (and sparse).
This in turn requires sophisticated symbolic simplifications to make the resulting equations
computationally tractable. Lagrange Il is therefore often only used for relatively small systems,
or derived once for single models which are not subject to change.

Projected Newton Euler

The Projected Newton Euler method is in many ways an answer to the issues with the Lagrange
II method. Instead of computing the derivatives of energy functions, it is based on projecting
the Newton-Euler method into generalized coordinates. This avoids computation of expensive
partial derivatives while at the same time removing the explicit acceleration constraints that
are usually introduced in the standard Newton Euler method to model articulated joints. The
general equations of motion derived this way are shown in equations 2.31 and 2.32.

H(q) =) (miJ§ Js, + IiJ} Jr) (2.31)

1

C(q,q) = (miJ& Js,q+1iT Jr.4) (2.32)

1

Here Js, is the center of mass Jacobian of body i, J, is the rotationJacobian and I; is the inertia
tensor. It may look as if this equations has not gained us much. After all, we appear to still be
required to obtain a large number of Jacobians (partial derivatives) and their derivatives. As it
turns out however, we can do away with explicitly computing all the Jacobians and instead use
recursive methods to implicitly construct them, making this a very computationally efficient
method. Almost all software packages which explicitly derive equations of motion are based
on a form of projected, recursive Newton Euler.

The derivation of the equations of motion in codyn are based on Featherstone’s method
(Featherstone, 2008), which is widely regarded as the current state of the art method. The
remainder of the section will describe in detail how this method is implemented in codyn,
how joint models can be defined and forward dynamics derived, and finally how models
can be specified in the cddyn language. Note that unless otherwise noted, formulations and
equations are adapted from (Featherstone, 2008) and provided for completeness.

2.6.3 Spatial vector algebra

To be able to follow the algorithms in this section, it is necessary to briefly introduce spatial
vector algebra, which is used in the formulation of the equations of motion. In spatial vector
algebra, motions and forces are expressed in 6D, and it defines the appropriate spatial opera-
tions. It usually is more common to express the linear and angular dynamics separately, leading
to writing equations in 3D spaces. Instead, spatial vector algebra allows to write equations for

51

Chapter 2. Dynamics

both linear and angular dynamics at the same time. Although considered less intuitive, once
one grasps the elementary concepts, the resulting equations turn out to be much simpler.

Spatial motion vector

A spatial motion vector, ¥ is a vector spanning the 6D motion space, i.e. it is an element of M?®
(the vector space of spatial motion vectors). Although it is possible to choose any vector basis
which spans the correct space, the most straightforward choice is to use Pliicker coordinates,
resulting in ¥ = [wy, 0y, w,, vo,, vo,, vo,] T Here w x» @y and w_ are angular velocities around
the coordinate axis unit vectors. Correspondingly, vg,, vo, and vo, are the linear velocities
at the origin of the coordinate frame, along its principal axis. Note that we use the same
convention as in (Featherstone, 2008), placing angular velocities first, then linear velocities.

This choice is arbitrary as long as it is used consistently and different conventions are in use.

Spatial force vector

Similar to spatial motion vectors, a spatial force vector, f spans F®, the vector space of spatial
force vectors. Again choosing the basis vectors for Pliicker coordinates, we obtain the spatial
force vector as f = [no,, no,, no,, fo Iy f.1T with no,, no, and np, being forces resulting in
rotation (e.g. torques) and f, f), f; being linear forces along the unit axes of the frame. Note
that F is the vector dual space of M® and vice versa.

Spatial transformations

A general transformation (rotations and translations) of a spatial motion vector can be done
using a spatial transformation matrix. If we define two coordinate frames A and B, then the
transformation 23X 4 of a spatial motion vector Am (in A coordinates) from frame A to frame B

is given by:
Bm=2X,"m (2.33)
B E 0 I 0 E 0
X, = = (2.34)
0 E -rx 1 —Erx E

Here, E is a 3-by-3 rotation matrix, I is a 3-by-3 identity matrix, 0 is a 3-by-3 zero matrix and r
is a 3-by-1 translation vector. r x denotes the skew symmetric matrix of r, which is defined as:

Ty 0 =Tz Ty
rx=1|ry, | = Tz 0 —ry (2.35)
T =Ty Ty 0

It is useful to understand the meaning of the skew symmetric matrix as the matrix form of the

52

2.6. Rigid body dynamics

cross product. Additionally, recall that the linear velocity % of a vector r resulting from an
angular velocity w is given by:

— =wxr (2.36)

This can be extended to spatial vectors. The derivative operator for a motion vector #z given a
spatial velocity ¥ then is # x 1, with

wx 033
(2.37)

X =

Vo X w X

Similarly, the derivate operation for a spatial force f' by a spatial velocity @ is & x * f‘ , with

N) wx VX T
Dx* = x* = =—(Dx 2.38
vo 053 wx (Ux) (2.38)
(2.39)
Spatial inertia

The spatial inertia of a rigid body defines how the spatial velocity of that body relates to its
spatial momentum, and the relationship is given by

h=1Iv, (2.40)

with h the spatial momentum and I the spatial inertia. Without going into the derivation, the
spatial inertia I is defined by the mass m of the rigid body, its center of mass ¢ and finally its
Cartesian inertia tensor I¢ at ¢. The resulting spatial inertia can be obtained by:

T

I= Ic+mcxcx mcex (2.41)
- mexT mI3 ’
Spatial acceleration
The spatial acceleration of a body is simply the derivative of the spatial velocity.
. d, d|w w (2.42)
a=—UV=— = , .
dr dt |vo F—wxF

with # the linear acceleration and w the angular acceleration of the body.

53

Chapter 2. Dynamics

Spatial operations

There are some other useful operations on spatial vectors and spatial transformations. A
summary of these operations is given in table 2.8.

Table 2.8 - Commonly used spatial operations

Quantity Expression

General transform

_ By E o0 I o] [E o0
Translation r A 0 E —rx I || -Erx E
Rotation E
e 1 A _B -1 _ ET 0
Spatial inverse Xz =X, = [—Er=)T ET
. . I o
Spatial translation Xtr(r) =]
-rx I
Spatial rotation Xroty ,.(0) = Exyz(0) 0
P AT T 0 Eyye(6)
1 0 0 c@® 0 -s@ c@ s@ 0
Ex©0)=] 0 c@) s@) |, Ey0) = 0 1 0 ,E, @)= —s(@) c@) 0
0 —s(@) c(O) s@ 0 c 0 0 1
Spatial quaternion Xquat(q) Eqéq) Eq(:q)]
G +a3-05 qads+ sy G2d4— G
Eq(q) =2| G2q3—qaqn 6/%*‘6732,—0-5 q3qs+ q24q1
GRAs+ @G0 G3qs— G2y 45 +q;—0.5
Affine transform Br, = E —Er
0 1
[X511 X2 Xi3
Extract E Xrot3(X) = Xo1 Xoo Xo3
| X351 X322 X33
X5,1...3 Elyjugvg
Extract —Er Xtr3(X) =—| Xs1.3E] 5,

T
X41.3E) 3,

Transform point XtrP(X, p)

Xrot3(X) - p + Xtr3(X)

54

2.6. Rigid body dynamics

2.6.4 Joint models

Ajoint represents a kinematic constraint by which two bodies are joined together. If we can
define this kinematic constraint in a general manner and express its velocities and accelera-
tions that are transmitted from one body to the next over the joint, then we can easily model
any type of joint (e.g. revolute, prismatic, cylindrical or spherical).

Let v; be the spatial velocity of body i and v, ;) be the velocity of the parent (1;) of body 7, i.e.
the body to which the joint connects body i. The velocity across the joint, vy,, is then simply

vy, =V — Uy (2.43)

Equivalently, the joint velocity can be expressed as a function of the generalized velocity of
that joint by

v (4) =Siq (2.44)

Here S; is called the joint motion subspace, which is a matrix projecting the generalized velocity
q to a spatial velocity and is specific to a particular joint type. Note that if we have defined
vy, (q), then we can obtain the corresponding motion subspace by

dvy,
S; = — (2.45)
0q
If the motion subspace not only depends on generalized velocities, but also generalized

coordinates, then it is necessary to compute a so-called bias velocity product

0S;
¢, =—qTg (2.46)
q
The joint motion subspace also projects spatial forces, by means of
_ QT
T, = Si f]i (2.47)

To obtain the spatial joint acceleration, we can simply differentiate the spatial velocity to
obtain

a;, =v;,=84+8§ (2.48)

Apart from projecting generalized velocities to spatial velocities, a joint model also determines
how generalized coordinates q project to spatial transformations. The spatial transformation
induced by the joint generalized coordinates is X7, (q) and is defined by the type of the joint. For
example, a revolute joint on the X axis would define Xj, = Xrot,(q). Lastly, the transformation
that locates the origin of the joint in its parent frame is notated by Xr,, and is part of a specific
model structure. The full transformation that locates the parent frame into the child frame is

55

Chapter 2. Dynamics

therefore given by
"X = X5, Xr, (2.49)

There are thus two entities that completely define any type of joint, its motion subspace, S;
and its joint transform Xj,.

Joint models in codyn

codyn does not model the physical bodies separately from the constraints imposed by joints
connecting bodies together. Instead, it defines each physical body and its degrees of freedom,
relative to its parent, in the same node. This approach is a result of the specific RBD algorithms
used, in which this representation is natural. By doing so, a kinematic tree can be easily defined
hierarchically with a minimal amount of nodes.

The general structure of a physical body, plus joint, in codyn is provided in Model 2.16.

codyn model 2.16 — General physical body and joint definition

templates {
node "body" {

q=20
dg = 0
T =0
m=1
com = "[0; 0; O0]"
I = "eye(3)"
spI = "Spatial.Inertia(com, m, I)"

node "joint" {
JointTransform(q)
JointVelocity(q, dq)

"eye (6)"
"zeros(6, 1)"

MotionSubspace(q, dq) "0[JointVelocity; dql(q, dg)"

BiasVelocityProduct(q, dq) = "d[MotionSubspace; ql(q, dq) = dq! = dq"
}
tr = "[0; 0; 0]"
coordinateTransform = "Spatial.Translation(tr)"
transform = "JointTransform(qg) * coordinateTransform"
velocity = "JointVelocity(qg, dq)"
acceleration = "transform *x [0; O0; 0; —g] + BiasVelocityProduct(g, dq)"

"transform"
"Spatial.Inverse(baseToLocalTransform)"

baseToLocalTransform
localToBaseTransform

The quantities that are specific to a particular model and need to be defined are the mass
m, center of mass com, inertia tensor I. Furthermore, the coordinateTransform (Xr), locating
the body origin in its parent frame, should be supplied. Finally, specific joint types need to

56

2.6. Rigid body dynamics

define two functions, the JointTransform (X;,) and the JointVelocity (v;). In practice, it is
often easier to derive the JointVelocity function than to derive directly the MotionSubspace.
Here we can see that the symbolic partial derivative functionality in codyn can be used to
automatically derive the correct joint MotionSubpace from a given Jointvelocity, and also
derives the BiasVelocityProduct automatically from the obtained MotionSubspace.

The velocity and acceleration define the body’s spatial velocity and acceleration and are
initially defined for the body having the fixed inertial frame as its parent (i.e. it is the root in
the kinematic tree). In this case, the velocity of the body is simply its JointVelocity and the
acceleration is the projected acceleration plus the bias velocity product. Note that acceler-
ation due to gravity can be modeled as an external force as well, but it is easier to project it
directly to the root acceleration of the system. This is exactly equivalent due to the fact that
gravity can be seen as a constant linear acceleration.

Joint types

codyn provides a variety of standard joint types in its standard library. Model 2.17 defines the
most important ones, including revolute, prismatic, planar, spherical and floating joints. As
can be seen, it is very easy to model different types of joints. Users can therefore also easily
define their own joint types, directly using the codyn language.

Two joint types are of particular interest, the spherical and float joints. Both are imple-
mented using quaternions to represent the rotational degrees of freedom. Although it is more
straightforward to represent the rotational degrees of freedom using Euler rotations (i.e. three
variables, one for each rotation), singularities cannot be avoided in general. Quaternions do
not suffer from this problem, however they do have their own. First of all, quaternion rotations
are realized through the use of unit quaternions and it is important that they stay normalized.
Due to numerical errors, the quaternion will tend to drift slowly over time. Fortunately, nor-
malization can be easily achieved in codyn through the use of variable constraint expressions.
These expressions can be associated with any variable and provide an easy way to restrict
variables to a certain domain, or in this case normalize them. The spherical and float joints in
model 2.17 show the use of these variable constraint expression in their definition of q.

The other difficulty about representing rotations by quaternions is that quaternions require
4 (constraint) generalized coordinates, but only 3 generalized velocities, i.e. the number of
generalized coordinates is not equal to the number of generalized velocities. Again, in codyn
this is not an issue, since differential equations can be specified separately. It is therefore
only a matter of expressing the differential equation of the generalized coordinates q as the
quaternion derivative of the generalized velocities

-4 —q42 —qg3
1725 4 qo q1 |dg (2.50)
qz 0 9o

57

Chapter 2. Dynamics

codyn model 2.17 - Various available joint types [play]

node "revolute{X,Y,Z}" : physics.body {
node "joint" {
axts = ["[1; 6; 0]", "[o; 1; e]", "[0; 0; 1]"]

JointVelocity(q, dq) = "[axis = dg; 0; 0; 0]"
JointTransform(q) = "Spatial.Rotation@@@1(qg)"
}
}
node "prismatic{X,Y,Z}" : physics.body {
node "joint" {
axts = ["[1; 6; 0]", "[o; 1; o]", "[0; 0; 1]"]
JointVelocity(q, dgq) = "[0; 0; 0; axis = dqg]"
JointTransform(q) = "Spatial.Translation(axis % q)"
}
}
node "planarY" : physics.body {
node "joint" {
JointVelocity(q, dq) = "[0; dq[0]; 0; 0; dq[1]; dq[2]]"
JointTransform(q) = "Spatial.Translation([0; q[1]; q[2]) = Spatial.
RotationY(q[0])"
}
}
node "spherical" : physics.body {
node "joint" {
JointVelocity(q, dq) = "[dqgq; 0; 0; 0]"
JointTransform(g) = "Spatial.Quaternion(q)"
}
q = "[1; 0; 0; 0]" ("q / sqgsum(q)")
dgdot = "0.5 * [—q[1], —q[2], —q[3];
ql[3], ale], —q[1];
-q[2], ql1], q[0]] = dq"
}
node "float" : physics.body {
node "joint" {
JointVelocity(q, dgq) = "dq"
JointTransform(q) = "Spatial.Translation(q[4:7]) % Spatial.Quaternion(qg
[0:4])"
}
q = "[1; 0; 0; 0; 0; 0; 0]" ("[q[0:4] / sqsum(q[0:4]); q[4:7]1")
dgdot = "[0.5 = [-q[1], —q[2], —q[3];
q[3], ale], —q[1];
-a[2], q[1], q[0]] = dq[06:3];
dq[3:6] + Spatial.Cross(q[4:7], dq[0:3])"
}

Similarly, a special floating base joint allows for efficient modeling of a system with a floating
base (e.g. a legged robot). It uses a quaternion representation for the rotation and 3 additional
generalized coordinates for the translation. Floating bases are more commonly modeled by
stacking massless revolute and prismatic joints, which can lead to instabilities and inefficien-

58

http://play.codyn.net/d/G1lGYNEXML

2.6. Rigid body dynamics

cies.

2.6.5 Model definition

Having defined joint models for various types of joints, we can now define rigid body models
in codyn. Model 2.18 shows how a relatively simple N-pendulum model can be defined. First
all bodies in the system are defined, in this case of joint type revoluteY. Then, the structure (or
connectivity) of the system is defined by defining physics. joint edges between physical body
nodes. As can be seen, the resulting model is not structured explicitly as a tree, which would
result in deeply nested nodes. Instead, a flat structure is preferable, separating kinematic
structure from model structure creating a comprehensible and succinct model representation.

0.5 1
<
ob
£ oo :

-2 0 2 4 6 8 10 12 14 16 18 20 22
Time (s)

Figure 2.13 — System output of a rigid body dynamics simulation of a chain of 5 pendulums.
The first pendulum starts out at an angle and starts accelerating due to gravity. The system
is damped by a simple velocity based damping term on the generalized forces of each of the
pendulum joints.

2.6.6 Inverse dynamics

Having previously defined all required quantities that define a RBD model, it is now time to
turn to deriving the dynamics. We first start by deriving the inverse dynamics, i.e. determining
T given ¢, for the system. As we will see, we can actually use the same algorithm as part of
deriving the forward dynamics.

The inverse dynamics can be obtained using a spatial version of the Recursive Newton-Euler
Algorithm (RNEA). Given the quantities g, §, § and a given model specification (i.e. defining

59

Chapter 2. Dynamics

codyn model 2.18 — Simple multi-pendulum model definition [play]

Includes the codyn physics templates for systems, bodies and
joint models
include "physics/physics.cdn"

integrator {

method = "runge—kutta"
}
defines {
n=2>5
}
ALl models start by defining a node derived from the physics.system
template
node "system" : physics.system {

Inside the system, joints are defined by inheriting from any
of the physics.joints.x templates. codyn provides a large number
of general purpose joints.
node "p{1:@n}" : physics.joints.revoluteY {
The center of mass
com = "[0; 0; —-0.5]"

The translation from the parent frame to the frame of
this joint
tr = "[0; 0; —-1]"

The 1inertia tensor of the physical body on this joint
I = "Inertia.Box(m, 0.05, 0.05, 1)"

Add some damping in the system on the generalized force
T = "—20 x dq"
}

Override certain variables on the root joint.
node "p1" {
tr = "[0; 0; 0]"
"0.2 x pi"
}

Create edges between successive nodes 1inheriting from

the physics.joint template. This chains joints together
to form the articulated rigid body.

edge from "p{1:@n}" to "p$(@1 + 1)" : physics.joint {}

The physics/model.cdn file should be included at the end of the

model definition and constructs a "model" node containing global

system quantities such as the center of mass and total mass. It is
#

i

also responsible for constructing the required Jacobians if requested.

nclude "physics/model.cdn"

The physics/dynamics.cdn file should be included last and constructs
the equations necessary for forward simulation of the dynamics. It

uses RNEA to construct C and CRBA to construct H in a new node called
"dynamics". It then derives generalized accelerations in dynamics.ddq
which project back to the individual joints.

include "physics/dynamics.cdn"

S, vy, ¢;, and X A(i)), we can compute T recursively as follows:

60

v ="Xai)Vag) + V),
a; ="'Xypayu +Sid+cjvi x vy,
ﬁinai+v,~x*Iiv,~—’X6"fix+ Z lX;fj

Jjep(i)
T
T;=8"f;

(2.51)
(2.52)
(2.53)

(2.54)

http://play.codyn.net/d/E1RsmCo5g6

2.6. Rigid body dynamics

Here ' X, is the spatial transform from base coordinates to i body coordinates and [are
any external forces acting on body i, in base coordinates. (i) is the set of direct child bodies
of i (i.e. A(j) = i). Each of these bodies projects its force f; to its parent through the spatial
force transform ' X i

Since cadyn is a declarative language, it is not possible to implement general algorithmes. It is
however possible to directly define all the necessary quantities directly from their mathemati-
cal form, and let codyn resolve the recursive relationship automatically. Recursive Newton
Euler can therefore be naturally described in codyn, simply by directly translating the equa-
tions above. The procedure is as follows:

1. Add new variables force, forceChild and forceExternal to each physical body

2. Define force as per equation 2.53, using forceChild for forces projected from the chil-
dren of the body

3. Use edge projection to project velocity and acceleration from each parent to each
child

4. Use edge projection to project force from each child to their parents forceChild

2.6.7 Forward dynamics

If we look at the inverse dynamics using recursive Newton Euler, we can see that if we set §
to 0, then we are computing C(q, q) instead of 7. What we are left with is the computation of
H(q). A reasonable algorithm to compute H(q) is called the Composite Rigid Body Algorithm
(CRBA). A spatial version of this algorithm recursively projects spatial inertia into H.

We start by computing the composite rigid body, spatial inertia using
I,=L+) 'X/I,/X] (2.55)
Jep@)

where I;_is the composite spatial inertia of body i in body i coordinates. It is simply the sum
of all body inertias below body i in the kinematic tree, projected into the coordinate system
of body i. Note the recursive definition which makes computation both efficient, as well as
suitable for implementation in codyn.

Having obtained I.,, we can project the spatial inertia to H through the joint motion subspace

as follows
Hj= S]rj F, (2.56)
Hji = H,-Tj (2.57)
'Fi=1,8; (2.58)
A g, = A0) X;‘f F;, (2.59)

61

Chapter 2. Dynamics

equation 2.59 is of particular interest. It recursively computes the contribution of the compos-
ite spatial inertia from each body i, upwards to each parent j in the tree.

The procedure in codyn to implement these equations is as follows:

1. Add new variables ICChild and IC for every body, where
IC = "spI + ICChild"

2. Declare edge projections to project IC from every child to its parent through
ICChild += "transform’+ IC % transform"

3. Add new variables
iFi = "IC * MotionSubspace(qg, dqg)"
Hil = "MotionSubspace(q, dq)T«'F;"

4. For every body i, declare edge projections to project to each body j, on the path from i
to the base

jFi <= "transform’ s iFi"

5. For every body i, declare edge projections for every body j, on the path from i to the
base, towards H
Hij <= "MotionSubspace(q, dq)Ts jFi"
Hit <= "Hij’"
Both the inverse and forward dynamics are implemented completely using only the declarative
language. This is important because the result is that we end up with a fully declarative model
of the derivation of the equations of motion. It is simply defined directly in terms of physical
quantities, leading to a very natural and efficient representation.

2.6.8 Jacobian

The Jacobian is an important quantity in rigid body dynamics, modeling, robotics and control
which we will need in chapter 5 for the modeling of wearable parallel structures. In rigid body
dynamics, the term Jacobian refers to a mapping between generalized velocities and Cartesian
velocities (in some frame). As such, it is the partial derivative of a Cartesian point x towards
generalized coordinates, i.e.

6x1 6x1
ﬁ 3an
Jx@)=1| :+ . (2.60)
0xXm 0xy,
o 9qn

Furthermore, recall that the total time derivative of x;(q) is given by

n Ay
i :Z 0x;

7 0q;

67] (2.61)

62

2.6. Rigid body dynamics

or

i=Jq (2.62)

As mentioned before, it is actually not needed to compute the Jacobian by taking an actual
partial derivative. In fact, equation 2.62 should look familiar, we have already seen it before
when defining how joints transform a generalized velocity to a spatial velocity

Vi = Sii]i (2.63)

Since spatial velocities can be summed (as long as they are expressed in the same frame), we
can obtain a base Jacobian °J, mapping generalized velocities to base velocities, as follows

07=19%,8, --- °X,S, (2.64)

We can obtain a Jacobian from a particular body i to the base, °J; simply by selecting the
columns from °J corresponding to the generalized velocities of the bodies on the kinematic
path from body i to the base

0. = lieg?so - ie,0F,, (2.65)

where ‘e jis Lif body j is on the path from i to the base, or 0 otherwise. 0J; is a mapping from
generalized velocities to Cartesian velocities at the system origin. However, often one will want
to obtain the Jacobian relating velocities to those observed at a certain end-effector position.

Because the Jacobian is a mapping from generalized velocities to spatial velocities, we can eas-
ily transform it to a different coordinate frame simply by applying a spatial motion transform.
Therefore, to obtain the Jacobian at a certain end effector position Or (in base coordinates),
we can apply a spatial motion translation:

o5, =xtr °n°J; (2.66)

We can also easily obtain the Jacobian for a particular body in a different base. This type of
Jacobian describes the mapping of generalized velocities to relative velocities between two
bodies and is very useful in kinematics based control (for example, controlling the end of one
leg relatively to the end of another leg). Given the base Jacobian °J j, forabody j at a position
Or; and similarly the base Jacobian °J;, for a body i at a position °r;, the Jacobian for j at °r;
assuming the base i at °r; is given by:

;=1 - %t Cr = °r) ', (2.67)

Finally, another important Jacobian to derive is the center of mass Jacobian. This Jacobian

63

Chapter 2. Dynamics

relates generalized velocities to center of mass velocities, and is another important quantity
for control (in particular for kinematics based balance control). Having calculated the center
of mass CoM by

1

CoM = Ai/l Y (mixtrP °X;,CoM,)) (2.68)

M=Y m (2.69)

we can obtain the center of mass Jacobian “® J in a similar way as the base Jacobian:

CoM j _ [OXO Xtr(CoM)S, --- °X,Xtr(CoM)S, 2.70)

In codyn, all these Jacobians are readily available. A Jacobian node can be defined inside any
physical body i, at alocation r; inside the local frame of that body, resulting in the computation
of °7,... It does so by first computing ° J, the base Jacobian of the full system and then projecting
back the relevant subsections of °J to each required body Jacobian. The general procedure is
as follows:

1. Determine if any Jacobians need to be computed (i.e. are there any nodes with the
physics.jacobian template)

2. If so, create a new variable J0 in the system jacobian node, containing the base Jacobian
0J computed by edge projecting columns of °J from each body in the system

3. Then, project back relevant columns of 07 (i.e. those in the path from body i to the base,
the joints which contribute to velocities in i) to each physics. jacobian node

Model 2.19 shows a basic usage of Jacobians in a codyn model. The center of mass Jacobian is
also automatically available in all systems and can be obtained from jacobian.Jcom. Finally,
Jacobians can easily assume a different base using equation 2.67, made available conveniently
in a codyn file which can be included inside a physical body node.

2.6.9 Closed loop dynamics

Whenever a kinematic structure closes on itself, the dynamics of that structure change signifi-
cantly. The mobility is defined as the degree of motion allowed by a certain structure. For a
non-closed kinematic tree, this is simply equal to the number of degrees of freedom. However,
whenever a structure closes on itself, it removes n, degrees of freedom, where n, depends on
the type of closing joint constraint. For example, consider a planar N-dof series manipulator
consisting of N revolute joints. If we close this structure from end point to base with another
revolute joint, we obtain a new system of only N — 3 degrees of motion. Modeling of closed
loop dynamics is essential for the co-design of wearable robots presented in chapter 5.

To obtain the equations of motion for closed loop systems, there are generally two methods

64

2.6. Rigid body dynamics

codyn model 2.19 — Example usage of Jacobians [play]

node "system" : physics.system {
node "p{1:4}" : physics.joints.pendulumy {
tr = "[0; 0; —-1]"
}
node "p4" {
node "jac" : physics.jacobian {
location = "[0; 0; —-1]"
}
Construct a jacobian for the center of mass Jacobian,
assuming the base in the p4 phsyical body. The resulting
jacobian is available in JComInP4 and maps generalized
velocities to velocities of the center of mass as observed
from p4.jac.location
parse "physics/algorithms/rebase_jacobian.cdn" {
tipJacobian = "jacobian.Jcom"
tipLocation = "model.com"
base = "jac"
var = "JComInP4"
}
}
edge from "p{1:4}" to "p$(@1 + 1)" : physics.joint {}

Processes all requested jacobians and creates corresponding
edge projections to obtain (in this case) p4.jac.J, the body
Jacobian of p4 at p4.jac.location

include "physics/model.cdn"

(Featherstone, 2008). The first method is to transform the system to obtain a new, reduced set
of generalized coordinates y. Given that y defines g uniquely, a function y exists such that
q =y (). Le. y is the function that maps the reduced generalized coordinates y to the original
generalized coordinates q. Then, derive twice to obtain the same mapping for generalized
velocities and accelerations

.0y .

_r 2.71
q dy ()
. O0y. (oy d).

= — _— 2.72
9 6yy+(6ydty (272)

The advantage of this method is that no explicit constraints have to be introduced into the
equations of motion, resulting in stable and accurate simulations. The main difficulty of this
approach is that it is not always possible to find a mapping function y which uniquely maps y
to q. More so, it is especially difficult to obtain y automatically for general structures. Finally,
closed loop systems can loose degrees of freedom, for example in singular configurations.
When this happens, it might be necessary to change the set of independent coordinates y such
that the system is no longer singular in the choice of y. This would have to happen during
simulation and is an expensive, and complicated operation.

65

http://play.codyn.net/d/Z5G8qyGQxU

Chapter 2. Dynamics

The second method is more general and easier to use since it derives the equations of motion
for any closed system automatically. It does so by introducing acceleration constraints in
the original equations of motion. In the original equations of motion, there will be two new
generalized forces 1) 7., the unknown constraint forces which account for the kinematic
constraint imposed by the kinematic loop and 2) 7, the known active forces exerted on the
loop joint (actuator forces, springs, dampers etc.). We can define the kinematic constraint
imposed by the loop joints in terms of joint acceleration by

Kg=k (2.73)
the same constraint imposes loop constraint forces by

T.=K'A (2.74)
and the new equations of motion will become

T-C+14
k

67
-A

(2.75)

H KT
K 0

The objective is then to construct K and k, solve for the unknown Lagrange multiplier A and
finally solve for the accelerations .

The motion that aloop constraint joint allows can be defined by a matrix T called the constraint
force subspace. It is the orthogonal complement of the joint motion subspace, i.e.

T-s8t (2.76)
and
T'S=0 (2.77)

in other words, T projects generalized forces into the constraint force subspace. Note that
T can be any basis that spans the correct subspace and there is thus no unique choice of T.
An example of a possible choice for T for a revolute joint on the X axis (and corresponding
motion subspace §) is given in equation 2.78.

(2.78)

S O = O O O
o = O O © ©
—_ o © O © O

S ©oO o = O O

‘c oo o o~
"o o oo ~ o

66

2.6. Rigid body dynamics

Having defined T, we can see that a constraint imposed using T leads to
T'v;=0 (2.79)

i.e. the velocity across the loop joint, projected through the constraint force subspace must be
0 (allow no motion). The loop joint velocity v; is simply the difference between the two spatial
velocities of the bodies the loop closes over. To obtain acceleration constraints, equation 2.79
can be differentiated, which after simplification (see Featherstone (2008) for details) results in:

T Ui-J)d=-T/(a - a’)- T/, (v; - v)) (2.80)

Here a:.’p is the velocity product acceleration of joint i and is available as a by-product from
applying recursive Newton Euler. The body Jacobians J; and J; do not need to be explicitly
derived, and can be obtained by projecting the motion subspaces of the two joints in the
correct frame of reference as explained in the previous section. We have thus obtained K and
k for the closed loop system.

To solve for A we can write 2.75 equivalently as

AA=Db (2.81)
A=KH 'KT (2.82)
b=k-KH '(t-C+1p) (2.83)

and solve for A. Note that A is not generally invertible (i.e. A does not have a unique solution),
but the equation can still be solved (for example using the pseudo inverse). We can also avoid
the explicit computation of H™!. Based on the method proposed in (Featherstone, 2008), we
use an LT DL decomposition of H to write

H=L"DL (2.84)
H'=w"pL™!
=L 'p 'L T (2.85)

A=KL'D 'L Tk"

—vI'ply (2.86)
Yy=L"'K" (2.87)
b=k-Y'D 'L Tx-C+1yp) (2.88)
A=A"D (2.89)

67

Chapter 2. Dynamics

Although this looks more complicated, the computation of L~'x, D~'x and D™'L~" x can be
performed efficiently using sparse methods adopted from (Featherstone, 2008).

Finally, having obtained A, we can solve for § in

Hij=1-C+1,+K'2 (2.90)

The main disadvantage of this method is that due to numerical and integration errors, the
kinematic constraints tend to drift. To address this issue, a stabilizing force can be added to
the computation of k which tries to reduce errors appearing in this way. The resulting system
is less accurate and less stable, so care has to be taken when analyzing results obtained from
simulations in this way.

In codyn, loop joints are defined by loop joint nodes. Several templates are provided for
different types of loop closing joints, specifying their corresponding constraint force matrices.
Loop joint edges then specify how a loop joint connects between two physical bodies in the
system.

The algorithms as outlined above are implemented in codyn by overriding the computation of
the forward dynamics in case of loop closing joints. If any loop closing joints are found, the
additional required equations are automatically added based on the closing loop joint types.

Example 1: loop closure to fixed base

The first example is a model of a simple parallel structure which closes on the fixed base.
Model 2.20 shows the codyn model for this example. It defines 3 revolute joints and then closes
the last body on the fixed world using a physics.cjoints.revoluteY closing joint. As can be
seen in the model, creating a closed loop system is very simple and does not require other
modifications to the original, non closed system.

Figure 2.14 shows the output and a schematic representation of the system. Note that the
original system has 3 degrees of freedom, but the resulting closed system has only one. This
can be easily seen in the output of the system since the motions can be described by one
variable (oscillations at the same amplitude, phase and frequency). A video of the resulting
simulation can be found on the

Example 2: Pantographic leg

While the previous example was closed on the fixed base, the next example models a parallel
structure of a pantographic leg (or 4 bar parallel mechanism). The schematic representation
of such a structure is shown in figure 2.15 on the left. The original system has 4 degrees of
freedom. After adding the closing loop constraint, the system reduces to 2 degrees of freedom.

68

http://www.codyn.net/gallery.html

2.6. Rigid body dynamics

co6dyn model 2.20 — Example of a loop closing joint [play]

include "physics/physics.cdn"
include "physics/cjoints.cdn"

integrator {

method = "runge—kutta"
}
defines {
offset = "0.2 = pi"
}
node "system" : physics.system {
node "p{1:3}" : physics.joints.revoluteY {
tr = "[0; 0; —-1]"
com = "[0; 0; -0.5]"
I = "Inertia.Box(m, 0.05, 0.05, 1)"
}
node "p1" {
tr = "[0; 0; 0]"
= "—Q@offset"
}
node "p{2:3}" {
q=["0.5 % piL + Qoffset", "0.5 x pi — @offset"]
}
edge from "p{1:3}" to "pS$S(@1 + 1)" : physics.joint {}
Create a closing joint node
node "pcl" : physics.cjoints.revoluteY {
tr = "[0; 0; —1]"
}
Connect the last body (p3) to the closing loop joint
edge from "p3" to "pcl" : physics.cjoint {}
include "physics/model.cdn"
include "physics/dynamics.cdn"
}

The model is provided in model 2.21. It is similar to the previous closed model, except that the
closing joint, cl, now closes back on the hip instead of the fixed base. In the model, a small
damping force is added on the hip and a small spring force is added on the knee joint. The
output of this system when simulated is shown in figure 2.15 on the right. The knee stiffness
causes high frequent oscillations in the knee joint due to initial movement of the hip (due to
gravity). The hip joint shows a damped oscillatory movement until the system comes to a rest.
Avideo of the resulting simulation can be found on the codyn website.

2.6.10 Contact modeling

The contact model is an essential component of a general purpose simulator, in particular if
used for the study of locomotion. Contact dynamics is a hard problem and has a whole field

69

http://play.codyn.net/d/0GeK7jY4QS
http://www.codyn.net/gallery.html

Chapter 2. Dynamics

///////61/ 2|]

_T e 1} B
q3 =5+t 2
&
-) q1 =
‘." 0 [_

Time (8)

Figure 2.14 — Left: a schematic representation of a closed loop system of one degree. The
original system consists of 3 revolute joints and is closed to the fixed base through p4. Right:
Output of the simulated system. The resulting joint angle motions are consistent with the
imposed constraint and can be described by a single variable.

hip
1 - Aot |
5]
w Of :
=i
<
par -y A
| | | |
7 0 2 4 6
ankle . Time (s)

Figure 2.15 — Left: a schematic representation of the leg. The open loop system consists of 4
revolute joints, hip, knee, ankle and par. A closing joint, cl, creates a pantographic structure
having only 2 degrees of freedom. Right: output of simulating the system. A damping force
acts on the hip and a spring force acts on the knee, causing quick oscillations.

of research dedicated to it. Here we only briefly discuss the two most common methods and
their implementation in codyn.

For rigid body dynamics, there are generally speaking two approaches to modeling contacts
(Featherstone, 2008), both of which are implemented in codyn. The first, and reasonably
straightforward, way is to model contact points by means of stiff spring/damper systems, and
is referred to as soft contact modeling, or the penalty method for contact modeling. Basically,
whenever there is a penetration between two surfaces, a virtual spring and damper exerts

70

2.6. Rigid body dynamics

force on the penetrating bodies in the direction of their normal and tangential directions.

codyn provides a basic implementation of soft contacts with basic Coulomb friction. It uses
codyn’s event system to determine the timing of contact activation and deactivation, as well
as to determine when a contact switches between stick and slip (depending on the friction
coefficient). It does so by allowing the insertion of contact points in physical bodies. Whenever
a contact point penetrates a contacting surface, contact forces are exerted as external forces
on the corresponding physical bodies. The procedure is generally as follows:

1. Each contact can be in one of three states, inactive, active or slipping.

2. A contact point transitions from inactive to active whenever it penetrates a contacting
surface

3. In the active state, a surface normal contact force is applied as the external force of the
body in which the contact is embedded. This force is computed by

f=KAp-Dp (2.91)

, with K the contact normal stiffness, Ap the penetration depth, D the contact normal
damping and p the penetration velocity. The tangential (friction) force is computed in
the same way, but tangentially to the contact surface.

4. The active state transitions to the slipping state when the tangential friction force
exceeds the normal force times the friction coefficient.

5. When either in active or slipping state, the contact point can transition to the inactive
state when contact between the two is broken (i.e. no longer penetrating).

The name penalty method refers to the fact that a contact reaction force only appears when
there is a non-zero penetration, thus only when the contact constraint has already been
violated. To make the system behave reasonably, the contact model needs to be very stiff,
leading to issues in numerical integration. Soft contact models are relatively easy to implement,
but very hard to tune. The spring and damper constants need to be finely tuned on a per
model basis, depend on the number of contacts and even depend on the type of desired
dynamic behavior of the system (for example walking and running might require different
contact model constants). Soft contact models can often be the cause of instabilities, non-
physical behavior and inaccuracies during simulation, in particular when using non-adaptive
numerical integration methods. This method is used in section 4.1 of chapter 4.

The second method for contact modeling is called hard contact modeling. Hard contact models
work by considering contacts as inequality constraints in the equations of motion. This leads
to a hybrid definition of the equations of motion, such that the dynamics of the system are no
longer defined by a single model. Effectively, hard contact models switch between different
dynamical models of the system and any combination of active and inactive contacts leads to
new dynamics. They are considerably harder to implement and are computationally much

71

Chapter 2. Dynamics

more expensive, but at the same time more accurate and more stable than soft contact models.
In addition to switching between different dynamic models, impulse dynamics have to be
propagated through the system at the time of contact, before switching to the new dynamics.
This method is used in section 4.2 of chapter 4 and in chapter 5.

codyn provides a basic hard contact model by utilizing the event system for opening and
closing contact resolution and the closed loop dynamics developed in the previous section to
implement the equality constraints imposed by active contacts.

Contact activation, impulse dynamics

When a contact point becomes active, an impulse has to be propagated through the system,
such that the point of contact is at rest. Considering r the contact point, f the contact point
velocity and J; the contact Jacobian, we require that the system after impulse is consistent
with the following constraint:

F=Jrg"=0 (2.92)

i.e. we require a new state for the joint velocities, §*, such that the contact point velocity 7
is zero. To calculate the effect of the impulse on the joint velocities, we can use the inertia-
weighted pseudo inverse of the contact Jacobian, also known as the dynamically-consistent
generalized inverse of the Jacobian (Khatib, 1987).

Jr=H'JIA, (2.93)
Ar=U-H D™ (2.94)

and we have

g =], 7 (2.95)

Note that this is the unique solution which minimizes §” Hg. In co6dyn contact activation/de-
activation is modeled using events. This means that there is no global resolution of all contacts
which are activated and deactivated. Rather, contacts are handled locally and sequentially. To
account for constraints imposed by currently active contacts, we use an extended Jacobian,
* J» which incorporates the active contact constraints:

= (2.96)

K

Doing so ensures the propagation of the impulse dynamics is consistent with the constraints
imposed by the active contacts.

We thus obtain a new velocity state of the system. This causes a discrete change in generalized

72

2.7. Performance

velocities as a result of the contact becoming active. In codyn we compute this new state each
time when a hard contact becomes active, i.e. when the event fires, and update new joint
velocities accordingly.

Loss of contact

Whenever the constraint force which keeps the contact constraint active becomes negative,
the contact is made inactive and there is a loss of contact. To obtain the contact force, recall
from equation 2.81 that we solve for the Lagrange multipliers, A. In this case, the A solved
for represent the physical force required to keep the constraint. Due to the formulation of
K, TA represents the constraint force in the body frame. We can then use a spatial force
transformation to obtain the contact force in the frame of the contacting surface normal.

codyn does not solve the linear complementary problem (LCP) when a contact becomes
inactive, instead relying on sequential resolution of contact activation and deactivation from
the event system. Although this is generally speaking inaccurate and can lead to jitter between
contact points, we empirically found the approximation reasonable for systems with a small
number of contacts, such as humanoid or quadrupedal models.

2.6.11 Visualization

codyn does not provide any visualization of rigid body models by itself. Nevertheless, it is
often very useful to be able to visualize the resulting 3D structure of a model. Problems in a
model can be easier to find by simple visual inspection, and visualizing a resulting movement,
instead of looking at joint angles, gives a much more intuitive representation of the system.

To aid in the design and inspection of rigid body models, codyn integrates with the open
source 3D studio, Blender. codyn rigid body models can be imported directly from the codyn
model file. Furthermore, codyn integrates with the Blender game engine to provide visualized
forward simulation of the system at interactive rates.

2.7 Performance

It has been stressed a few times that codyn aims for high performance and that it has a good
conceptual model to this end. In this section we will see how it achieves this goal.

2.7.1 libcodyn

Until now, nothing has been said about the implementation of the execution engine in codyn.
The core library, libcodyn, is responsible for model parsing and evaluation. It does so by imple-
menting a special purpose, stack based Virtual Machine specifically targeted for numerical
computation. Mathematical expressions are compiled to low level instructions which are

73

Chapter 2. Dynamics

800 Blender ol
D+ jle o T R ¢ EEER | | siender Game

User Persp

Figure 2.16 — Screenshot of codyn integration in blender. It shows a rendering of the closed
loop system presented in model 2.21. Models can be directly imported from codyn files and
simulated using the Blender game engine.

then interpreted during execution. There are a few reasons that make the implementation
relatively simple. Firstly, the only values coédyn math knows or cares about are floating point
numbers and the stack is therefore simply a continuous array of floating point numbers. Sec-
ondly, codyn has been designed with a dimension invariable runtime. This means that all
instructions, expressions, variables and functions have a known and invariable size during
execution. This in turn means that stack sizes are known beforehand and all required memory
can be preallocated.

Although the libcodyn implementation is certainly not slow, it is also definitely not yet high
performance. This becomes apparent especially when simulating large systems. Not only does
it need to execute a virtual language, instead of native instructions, it also:

Copies more memory than required due to each expression having its own stack

Cannot use special purpose vectorization instructions (i.e. SIMD)

Cannot optimize loops or memory access

Cannot inline function calls

Executes any and all instructions, even if not necessarily required

There is one advantage of the Virtual Machine implementation though. Because it does not do
any optimizations, it can begin execution directly, without any overhead from a compilation
stage. It is therefore perfectly suitable for quick experimentation, even for larger systems. Of

74

2.7. Performance

course, there is no particular reason why libcodyn could not implement a more sophisticated
execution engine, but implementing one is far from a trivial task, especially without loss of
expressiveness in the language.

To compare the performance, we did a simple experiment simulating a coupled network of
20 amplitude controlled phase oscillators. We compare the performance of matlab (using a
vectorized implementation) and standard libcodyn (using an implementation with nodes
and edges, i.e. devectorized). Both in Matlab and libcodyn we use a Runge Kutta integrator of
order 4 and simulate the differential equations for 10 seconds with a timestep of 1 millisecond.
Simulating this system in Matlab (2014a) takes approximately 3.9 seconds while libcodyn (3.6)
simulates it in approximately 3.3 seconds.

This shows that libcodyn is sufficient to simulate these type of differential equations with a
performance very similar to that of Matlab. Furthermore, libcodyn can simulate up to 50 of
such oscillators in real time (with full coupling) on a very moderate system, which makes it
suitable for a large variety of applications.

Although this performance is sufficient for oscillator systems (which are arguably relatively
simple computationally), this is not the case for larger and more complex systems such as the
rigid body dynamics.

2.7.2 Theroad towards performance

There were two main motivations to address the issue of performance. The first and obvious
motivation was simply that the rigid body dynamics simulations were not competitive in terms
of simulation speed. This is especially problematic when using evolutionary optimization
strategies or other population based optimization methods. These rely on large numbers of
simulations to be performed and a simulator which is 10 times slower means 10 times fewer
experiments.

Secondly, codyn has a specific goal to run on embedded systems, such as hard real time
constrained systems, but also micro-controllers and other micro systems with a very limited
amount of resources (but capable of floating point arithmetic). Clearly;, it is not possible to run
any kind of high level virtual machine or libraries designed to run on consumer hardware on
such platforms.

To deliver on the claims made, the codyn framework provides a sophisticated tool which
translates, without loss of functionality nor conceptual compromises, high level codyn models
into a representation which is:

Low level

Dependency free

Real time ready

Micro-controller compatible

75

Chapter 2. Dynamics

273 AsrawasC

The goal is to generate code that can run on low level or embedded systems with efficiency
close to that of hand written code. It is possible to implement an actual compiler to translate
directly into native instructions, but the amount of work involved in doing so would be a
gigantic task and would likely not result in anything near the performance of what existing
compilers produce.

Instead, codyn models are translated into C, which is the most widely supported and low-level
language currently available. Since this should result in raw performance, the tool has been
aptly named rawc. Code generation is split into 5 stages:

Model destructuring
Sparsity analysis

Structure recovery
Dependency resolution
Abstract program generation

2B o A e

Code generation

Stage 1: Model destructuring

The first stage concerns reading in the model and performing analysis on the structure of the
model. Because we are concerned about a low level implementation of the model, we can
actually throw away all of the structure imposed by the codyn language such as the nodes
and edges. These concepts are required for the modeling methodology, but not for the actual
generated code.

We therefore start by extracting all expressions which necessarily need to be computed. These
include state variables, random values, differential equations and any dependencies of these
(such as other variables, user functions, etc.). We can do so by first compiling the model to the
virtual machine representation using libcodyn and then extracting all the generated virtual
instructions.

Data storage in the low-level generated code is a single big block of floating point numbers
called the DataTable. It contains storage for state variables, derivatives, delays, random num-
bers and any other intermediate values. Due to the fact that codyn is a declarative language,
all computable expressions are in the form of value assignments. The output of the analysis
stage is then simply a list of DataTable assignments with pre-compiled virtual instructions.

Stage 2: Sparsity analysis

A very important step in generating efficient code is the sparsity analysis stage. Looking at the
rigid body dynamics, it is quite obvious that by writing all the equations using spatial vector
algebra, we cannot obtain efficient code directly. Quantities such as the motion subspace,

76

2.7. Performance

force constraint subspace, spatial transformations and inertias are all sparse. The objective
is to automatically determine the sparsity of these quantities and generate code that only
computes values as necessary.

Because codyn models are declared, the full model sparsity can be easily determined by
iterating over all expressions, accumulating sparsity information over mathematical operators
and functions, variable references, matrix and index operations, etc. It is important to note
that this would be generally impossible in general purpose languages, unless the user would
specifically indicate which expressions would be sparse.

Once the sparsity of all expressions is determined, a heuristic algorithm determines whether
or not it is worth to generate special purpose sparse code for a particular operation, based on
the number of sparse entries and number of reduced computations. If needed, instructions
are replaced with sparse variants containing the sparsity information of their operands. This
optimization leads to a huge increase in performance for simulating rigid body dynamics,
while preserving the ability to write the derivation of the equations of motion in its most
general form.

Stage 3: Structure recovery

There are two optimization criteria to take in mind when generating low level code. The first
is obviously to try and generate fast code, but the second is to try and generate small code.
Smaller code does not mean faster code, but it does mean a smaller memory footprint. This is
especially important for micro-controllers where code size is a very real constraint. This stage
of code generation is particularly concerned with generating small code and is essential for
the implementation of central pattern generators on micro-controller type hardware (such as
the Salamandra robotica IT (Kniisel, 2013)).

After having destructured the model into simple pairs of {DataTable entry, expression}, we
can try to recover some structure as a means of generating smaller code. The structure being
recovered is that of common parametrized (sub)expressions. Two expressions are considered
common when they can be made equal by means of parametrization of sub-expressions
retrievable from the DataTable. To illustrate this, consider the following two assignments:

Si =84+ 8y *cos(pi*Sy) (2.97)
§j =8y *cos(S; *5)+8, (2.98)

where S is the DataTable, a, b, ¢ and ¢ are various elements in S and pi is a numerical constant.
First, expressions are transformed into a canonical form. This is essential because it results in
a unique representation of equivalent expressions, such that they can be compared in linear
time for equivalence. Canonicalization essentially orders operands of commutative binary
operators into a canonical order and canonicalizes equivalent operations (such as as unary

77

Chapter 2. Dynamics

minus and —1%). The canonicalized expressions are:

S;=8,+Sp*cos(pi*S;) (2.99)
S§j=8c+S8p*cos(5*8;) (2.100)

To determine if the two expressions have a common, parametrized form, we can simply
compare each individual instruction for parametrized equivalence. Two instructions are
equivalent if

1. The instructions are strictly equivalent, exact equality, and

2. The instructions can be parametrized, i.e. passed as a function argument. For example,
DataTable variables can be parametrized, but a binary operator cannot

During this procedure, value instructions (such as numerical constants) can be promoted to
be stored in the DataTable if this means the expressions can be made common. In the example
above this is what would happen, since pi and 5 are not equivalent, but can be promoted in
which case they can be parametrized. The resulting parametrized function which can compute
both expressions, and the transformed expressions are:

f(x1,%2) = x1 + Sp * cos (x2 * S¢) (2.101)
Si = [(Sa, Spi) (2.102)
S;=f(S8Ss) (2.103)

The reason for this common expression parametrization is two-fold. First, simply doing the
transformation to capture common expressions in functions already reduces code size. At the
same time, the compiler is still able to inline the function call if it decides to do so, i.e. there is
no loss of performance. Secondly, it allows for automatic de-vectorization and loop generation
of common expressions which drastically reduces code size.

Stage 4: Dependency resolution

To assist code generation, the next step is to generate a dependency graph of all the expressions
that need to be computed. The objective is, given a set of states that need to be computed, 1)
determine all required dependencies of those expressions (such as intermediate values) that
need to be computed as well, and 2) determine the order in which all these expressions need
to be computed.

Stage 5: Abstract program generation

Instead of directly generating C code, an abstract program is generated containing an abstract
version of the code. This is useful because it allows for the abstraction of the specific code
generator. Currently, the best supported code generator in rawc is the C code generator, but

78

2.7. Performance

an experimental JavaScript exists as well.

Generating the program consists of separating computations into several stages of execution.
Generally speaking, computations are separated into:

— prepare: this sets the pre-initialized state of the network and should be called just before
init.

— init: initialize the network at time ¢ = 0. This is called just after prepare. The separation
of the two allows for variables to be set externally in between prepare and init.

— diff: computes the differential equations.

— post: computes any values that need to be observable after a successful integration step.

The abstract program also contains abstract versions of event handling, management of
delayed expressions, updating of random values and user functions. Each time a set of ex-
pressions needs to be computed, its consecutive common (sub)expressions are automatically
embedded inside an abstract loop such that minimal code can be generated.

Stage 6: Code generation

The final stage is the actual code generation. This stage is relatively easy since all the hard
work has been done by generating the abstract program. What is left is to translate codyn
instructions to C. Fortunately, the mathematical expressions in codyn are not that different
from such expressions in C. Mathematical operations are translated to standard C implemen-
tations (where possible). Functions which are not supported in C (more specifically, in libm)
are provided by a small rawc math library. This library is included directly in the generated
code such that the C compiler can still inline these functions if it sees fit.

Micro-controllers do not always have all the required mathematical functions available, or
standard implementations might be inefficient. For example, it is not uncommon to use a
lookup table for functions such as sin and cos because their computations are expensive
and take variable time depending on their arguments. rawc allows any math function to be
overridden by user provided implementations.

The resulting code is generated in such a way that it can be compiled directly, without need
for configuration or any external dependencies. It should be noted that the generated code
currently only supports floating point arithmetic and is thus not suitable for micro-controllers
without an FPU (floating point unit), or enough power to emulate floating point instructions.

2.7.4 Performance comparison

We briefly compare the performance increase due to the use of rawc when compared to
libcodyn. We first look at our previous oscillator example. Recall that using libcodyn we were

79

Chapter 2. Dynamics

able to simulate up to 50 fully coupled oscillators in real-time. When we use rawc to generate
optimized code for this network the simulations run approximately 130 times faster than real-
time. The increase in performance does depend on the type of simulation, but it generating
optimized code can result in up to two orders of magnitude improved performance.

We continue to compare the performance of the RBD simulation in codyn with two popular
alternatives, Bullet and SimMechanics. We are mainly interested in practical time performance,
i.e. how much real-time does it take to simulate a system of N degrees of freedom for T seconds.
For each simulator, we measure how long it takes to simulate 5, 10, 20, 30, 40 and 50 degrees of
freedom when simulating for 30 simulated seconds. The degrees of freedom are configured
in a single, long chain of revolute joints, which is a worst-case system configuration for the
method used in codyn to solve for the equations of motion.

We tried to make the comparison fair, by choosing the same simulation time step (1 mil-
lisecond) for all simulators, using fixed time step integrators. Importantly, we did not spend
significant time trying to optimize for simulator settings. It may be possible that different
performance can be obtained for each simulator by carefully tuning various (possibly prob-
lem dependent) parameters. However, here we focus on standard settings for each simulator.
For SimMechanics, we used the Accelerated (i.e. compiled) model target with optimizations
turned on.

All simulations were performed on an iMac, 3.2 GHz Intel Core i3 with 4GB of 1333 MHz DDR3
memory. Furthermore, we used Bullet 2.82, Matlab 2013a and codyn 3.6. Numbers shown
here may vary depending on the platform and the version of the software used. Figure 2.17
shows the results of measuring performance of the four simulators. Here we can see that
standard codyn does not perform particularly well, being barely realtime with 5 DOFs. Bullet
and SimMechanics perform an order of magnitude better and show very similar performance.
However, when we use codyn rawc to generate optimized code, we can see that (in particular
for smaller systems), rawc outperforms both Bullet and SimMechanics by an order of mag-
nitude. Finally, both Bullet and SimMechanics scale better with increasing number of DOFs
when compared to codyn rawc, showing approximately similar performance for 40 DOFs and
better performance for larger systems.

As noted before, the single chain of joints is a worst-case for solving the equations of motion
using Recursive Newton Euler and the Composite Rigid Body algorithms. Whereas for both
Bullet and SimMechanics the performance is mostly invariant of the system configuration,
this is not so for codyn. In particular, performance of codyn depends largely on the number of
branches in the kinematic tree. Another important step for improved performance when using
rawc is the sparsity optimization stage (which is enabled by default). To illustrate to effect of
branching and the sparsity optimization, we performed a second benchmark comparing the
following four cases:

1. rawc with 1 branch and sparsity enabled

80

2.8. Tools

—o— bullet simmechanics == codyn —e= codyn rawc
T

10° E
102 g E
& B §
g = B
1] .
s 10
&]
10° E
1071 £ ! ! | | L

Degrees of freedom

Figure 2.17 — Simulation performance of Bullet, SimMechanics, codyn and rawc on systems
with increasing number of degrees of freedom. Simulations were performed for 30 simulated
seconds. The y-axis shows in logarithmic scale the real time it took for the simulations to finish.
As expected, codyn itself is an order of magnitude slower than both Bullet and SimMechanics
(which show similar performance). When using rawc to generate optimized code, we however
obtain another order of magnitude faster simulations, for systems up to 20 degrees of freedom
than Bullet or SimMechanics. Both Bullet and SimMechanics show better scaling properties
towards systems with a larger number of DOFs.

2. rawc with 1 branch and sparsity disabled
3. rawc with 5 branches and sparsity enabled

4. rawc with 5 branches and sparsity disabled

Note that case 1) corresponds to the case shown in figure 2.17. The degrees of freedom are
distributed over the 5 branches, meaning that for example for a system with a total of 10
DOFs, there are 5 chains of each 2 revolute joints. Figure 2.18 shows the results of running the
performance benchmark for each of the four cases. As can be seen, the difference between a
branching factor of 1 and 5 is again an order of magnitude. Finally, it is shown that the sparsity
optimization can significantly increase performance as expected.

2.8 Tools

The design of codyn as a core library with an accessible API (application programming in-
terface) has enabled a rich tooling environment for analyzing, simulating and manipulating
codyn models. Rather than an afterthought, cddyn has been designed from the start as an easy
to access core library enabling rich tooling. This is important because it allows third parties to

81

Chapter 2. Dynamics

—o—bf1, sp bf 1, nsp —e— bf 5, sp =e— bf 5, nsp

r T T T]
10! |- 1
_]
: |]
0 N

= 10 E
107} E

L | | | | |]

Degrees of freedom

Figure 2.18 — Performance of codyn rawc comparing different branching factors (1 and 5) and
the effect of sparsity optimization. bf 1 and bf 5 are respectively branching factors 1 and 5, and
sp/nsp indicates respectively sparsity optimized and not sparsity optimized. The first case (in
blue) is identical to the rawc case shown in figure 2.17. As shown, both the branching factor
and the sparsity optimization have a large impact on general performance.

easily extend and modify functionality in codyn, adding additional analysis or automation
tools, and integrating codyn in existing software frameworks.

2.8.1 Command line tools

codyn comes packed with a multitude of command line tools to analyze, simulate and render
codyn models. Additional tools are easy to develop externally since the underlying library has
been designed with tooling in mind. The most important tools are presented below.

— cdn-monitor: a tool to quickly simulate and monitor certain variables in the network.
The output is in the form of a simple tabular format which can be easily consumed by
other tools for further processing

— cdn-rawc: the previously described tool which transforms a network into a high perfor-
mance, real-time ready implementation without loss of functionality

— cdn-compile: a convenient tool to quickly compile and validate a network, providing
extensive error reporting

— cdn-render: a tool that outputs a graphical rendering of a network in a variety of
formats

— cdn-repl: a Read-Eval-Print-Loop interactive console for inspecting, evaluating and
quick plotting of codyn models

82

2.8. Tools

2.8.2 Graphical designer interface

Besides being a framework for high performance simulation of coupled dynamical systems,
codyn is also meant to be an educational platform. To introduce students to dynamical systems
modeling and numerical integration, a graphical user interface is provided in which codyn
models can be constructed and inspected graphically. Furthermore, models can be directly
simulated while monitoring variables. It provides a great way to experiment with simple
models and explore the effect of model parameters, without the need to dive into the codyn
language. Figure 2.19 shows the basic graphical interface.

File Edit Simulate Vview Add Help

2 "
o B & i C
| v (cdn)|
P - 2
L [}
node_2 node_3
r |t
] L
node node_1
Name: network
MName Expression | Flags Interface
Period: | 0:0.005:10 | (s) | Simulate period | | Euler & | [Reseed random number generator

Figure 2.19 — Screenshot of the codyn graphical user interface. The canvas represents the
codyn network and can be interacted with to create and modify nodes and edges. Variables
can be added, removed and inspected in the bottom panel.

2.8.3 Supported languages

The core codyn library is written in C. Although a higher level language would have made
implementation of the feature rich cédyn platform easier, using C has been a conscious
choice. Doing so has enabled cddyn tools to be written in a variety of different higher level
languages since it is relatively straightforward to consume C based software libraries from
other programming languages. codyn is installed with excellent support for the popular Python
and C# languages, which makes building tools on top of the core codyn library very easy. Much
of the more complicated tooling, such as the code generator (cdn-rawc) and the graphical

83

Chapter 2. Dynamics

designer interface have been written using the C# language support from codyn.

2.9 Availability

Development of codyn uses the git version control system running on the codyn server. All
sources can be directly viewed and obtained from the git server running at http://git.codyn.
net/. Regular releases of all software in the form of tarballs is also available for download at
http://download.codyn.net/releases/.

There are two important factors that determine whether or not a software framework is
easy to adopt. The first is the availability of documentation, manuals and tutorials. Without
proper documentation, it is difficult to use any reasonably complex software framework. All
documentation for codyn is available on the website. The second major factor is how low the
barrier of entry is to get started. codyn has full support for the GNU/Linux and OS X platforms.
Packages for Ubuntu i386/x86_64 and OS X (>= 10.6) are available for download from the
website (http://www.codyn.net/download.html) and provide all libraries and tools without
the need for manual compilation or installation.

To lower the barrier even further, a simple online playground is available on the codyn server
allowing users to try out a limited version of codyn directly from the browser at http://play.
codyn.net/. All examples given in this chapter are available on this playground to try out and
observe. Figure 2.20 shows a screenshot of the online playground.

codyn playground Simulate = Share Download Simulation

15 defines {n =4}

17 templates {

edge coupling {

direction = "1"
bias = "0.25 * pi”
noise = "rand(-0.0001, 0.6001)"

p' += "sin(input.p - output.p - direction * bias + noise)"
31 }
2}

34 node "n{1:@n}" { [] [E] | L

p = "rand(-pi, pi)" (@ : "2 * pi")

Figure 2.20 — Screenshot of the codyn online playground. The panel on the left shows the
codyn declarative language. A rendering of the structure of the current network is shown in
the bottom right panel. Once simulated, resulting signals are automatically plotted in the top
right panel for inspection. The codyn network can be downloaded or easily shared online by
obtaining a permalink to the playground document.

84

http://git.codyn.net/
http://git.codyn.net/
http://download.codyn.net/releases/
http://www.codyn.net/download.html
http://play.codyn.net/
http://play.codyn.net/

2.10. Conclusion

2.10 Conclusion

In this chapter we have presented a novel and open methodology for the design and modeling
of coupled dynamical systems. The representation chosen by codyn leads to a natural model-
ing structure of many types of dynamical systems, including coupled oscillators (e.g. central
pattern generators) but also rigid body dynamics. A complete, state of the art implementation
of Featherstone (2008) is provided, including various joint models, forward/inverse dynamics,
contact modeling and closed loop dynamics. Importantly, there is no dedicated RBD engine
in codyn, and everything is structurally declared and derived using the codyn language only.
This allows for a unified representation of a system’s dynamics, whether it be for control (such
as central pattern generators) or rigid body dynamics, or other types of dynamics.

Furthermore, various tools built around the core codyn library provide a multitude of useful
functionality. Using cdn-rawc, efficient, optimized, low-level code can be generated auto-
matically from any high-level representation of a codyn dynamical system, without loss of
generality or expressiveness. The resulting code is suitable for Real Time or embedded systems,
such as those often used in robotics, or even micro-controllers. The cdn-studio provides
a graphical user interface in which dynamical systems can be modeled in a graphical man-
ner and experimented with, making it a useful tool for educational purposes. Together with
its availability for GNU/Linux and OS X platforms, the website with documentation and
instructions and the online playground, codyn makes it easy to get started.

We will first use codyn for the modeling of the rigid body dynamics of an adult sized human
in chapter 4. Here we use the capabilities of cdn-rawc to generate fast code suitable for large
scale, population based optimization. In the same chapter, we also implement a model of the
CoMan humanoid robot in codyn and see how the use of the hard contact model available in
codyn provides a more stable simulation of ground contacts, leading to a reduced objective
complexity. Finally, in chapter 5 we use the closed loop dynamics modeling and powerful
model parametrization of codyn to simulate various wearable robot morphologies while
optimizing for human locomotion assistance.

There are limitations to the way codyn works as well. It is only suitable for the modeling
of systems governed by ordinary differential equations. Furthermore, if a system cannot be
easily represented by nodes and edges, then modeling it in codyn can be, although doable,
difficult. With a specific focus on Real Time and embedded systems, codyn specifically targets
dynamical systems which do not alter structure over the course of their simulation. When
looking at the simulation of rigid body dynamics specifically, it is therefore ill-suited for
the simulation of modular robots, to give an example, which reconfigure during operation.
Although codyn provides RBD, it does not at present provide any larger infrastructure for
simulations, apart from numerical integration. This means, for example, that there is no
interactive, graphical simulation environment, no abstraction of actuators, motors or sensors
(such as cameras or range finders, etc.). In other words, it provides the bare simulation, but
currently does not provide a fully integrated, robotics simulation environment.

85

Chapter 2. Dynamics

Future work includes further increases in performance, specifically considering closed loop
systems and contact models. Furthermore, the appropriate resolution of constraint systems
such as the hard contact model can be improved as well and is currently unsuitable for
handling large numbers of contacts and is limited currently to simple point contacts. It would
also be interesting to extend the RBD features of codyn towards a full robotics simulator
package, possibly integrating it with existing frameworks such as

86

http://gazebosim.org

2.10. Conclusion

codyn model 2.21 — Example of a closed loop pantographic leg [play]

include "physics/physics.cdn"
include "physics/cjoints.cdn"

integrator {
method = "runge—kutta"

}

node "panto" : physics.system {
node "hip" : physics.joints.revoluteY {
com = "[0; 0; —-0.02]"
m="0.01"
= "Inertia.Box(m, 0.01, 0.005, 0.04)"
q="0.1 % pi"

—

Torque due to slight damping
= "1e_3"
T = "D x dq"

o

node "knee" : physics.joints.revoluteY {
tr = "[0; 0; —-0.04]"
com = "[0; 0; -0.03]"
m="0.02"
I = "Inertia.Box(m, 0.01, 0.005, 0.06)"
g = "-0.4 % pi"

Torque due to a virtual spring around the
1initial angle of the leg
q0 = "q" | once
K "9.1"
T ="K=x* (q0 - q)"
}

node "ankle" : physics.joints.revolutey {
tr = "[0; 0; -0.06]"
com = "[0; 0; -0.025]"
m="0.01"
I = "Inertia.Box(m, 0.01, 0.005, 0.05)"
qg="0.4 % pi"

par" : physics.joints.revoluteY {

tr = "[0; 0; 0.02]"

com = "[0; 0; 0.025]"
m=0.1
I = "Inertia.Box(m, 0.01, 0.005, 0.05)"
q="-0.4 % pi"

edge from "{hip,knee,ankle}" to ["knee", "ankle", "par"] : physics.joint {}
Close pantographic parallel structure
node "parcl" : physics.cjoints.revoluteY {
tr = "[0; 0; 0.06]"
}

edge from "{par,parcl}" to ["parcl", "hip"] : physics.cjoint {}

include "physics/model.cdn"
include "physics/dynamics.cdn"

87

http://play.codyn.net/d/0StXWjechk

1] Optimization

Apart from modeling dynamics, a second major cornerstone for the research presented in Part
Il is optimization. Just like ‘dynamics’, ‘optimization’ has a very broad definition. It is generally
defined as the process of making something as perfect as possible; the execution of this process
thus yields an optimal result. Optimization is a process that can be applied to any type of
problem which has an associated cost. This cost, as a function of a solution to a problem, is
what determines what the perfect solution to a problem is, namely that solution which renders
a minimal cost. When the solutions yielding a minimal cost are not known beforehand, then
optimization processes can provide a powerful framework to find or discover them.

Optimization is such a large topic of research that it squarely falls outside of the scope of this
text to discuss it fully. Nevertheless, optimization is an ubiquitous method used extensively
in robotics and during the work presented in this thesis as well, and as such it deserves a
small introduction. There are different ways to create a taxonomy of optimization methods. In
the field of robotics, which is concerned with mechanical design and control of articulated
structures, the methods being applied can usually be divided on the metaheuristic axis.

The general problem of optimization can be formulated as

minixmize fix),(i=1,---,i=1 3.1
such that hj(x)=0,(j=1,---,j=J) (3.2)
gxx)=<0,(k=1,---,k=K) (3.3)

i.e. find a solution for x which minimizes f; (the cost function) with the equality constraints
hj on x and inequality constraints g on x.

The use of metaheuristics refers to the search for and discovery of solutions by a procedure of
informed and repeated trial-and-error, and does not require any knowledge of the behavior
of fi, hj or gi. This contrasts with classical methods, such as iteration methods (e.g. New-
ton’s method), which need information on f; (usually its derivative) to determine in which
directions of x an improvement of f; can be obtained (within constraints imposed by k; and

89

Chapter 3. Optimization

gx)- Optimal control (Zhou et al., 1996) and multiple shooting are popular non-metaheuristic
methods in the robotics community. The main advantage of using metaheuristics instead of
these methods is that little knowledge of the cost function landscape is required. It therefore
also allows for a more explorative search of the solution space since cost functions can be
defined in very generic terms, whereas non-metaheuristic methods usually require more
specific costs. Consequently, metaheuristic methods usually have less problems with local
optima.

Metaheuristic methods also have disadvantages. First, heuristic methods are often stochastic
in nature. This means that to get reliable results, optimizations often have to be repeated a
number of times. The optimization process itself can also be very computationally expensive,
since search, although informed, is still a process of trial-and-error, often requiring many trials.
Metaheuristics also often lack fundamental underlying theory and do not guarantee that an
optimum is found in finite time.

A large number of metaheuristic methods are inspired by natural processes. Whether they are
evolutionary processes (Genetic Algorithms, (Goldberg et al., 1989)), swarming behavior (Par-
ticle Swarm Optimization, (Kennedy and Eberhart, 1995)) or methods derived from studying
behavior in colonies (Ant or Bee Colony Optimization, (Dorigo and Birattari, 2010; Karaboga
and Basturk, 2007)), they are all inspired by observations of natural processes. The idea that we
can optimize engineering problems by mimicking natural processes is a powerful one. Indeed,
it is widely accepted that these processes lead to (local) adaptation to obtain an optimal fitness
(the inverse of cost). Most of the methods derived from these observations are based on a
populace with such internal dynamics that over time, a global optimum can be found.

This chapter contributes a novel particle swarm optimization (PSO) based method, suitable
for the simultaneous optimization of solution structure and its parameters. This algorithm
is used in chapter 5 for the co-design of a lower limb, assistance providing wearable robot.
Furthermore, a general architecture and software framework for large scale optimizations
using population-based methods has been developed and is provided and distributed under
an open source license.

We now first begin with a brief introduction into population-based optimization methods.
Thereafter the novel PSO algorithm will be explained in detail. Section 3.3 continues to discuss
the application of the optimization of multiple objectives, with a particular focus on popula-
tion based methods used in chapters 4 and 5. Finally, section 3.4 describes a framework for
performing large scale optimization that has been used for the work presented in Part II.

3.1 Population-based methods

Population-based optimization methods are based on maintaining a (possibly large) popula-
tion of potential solutions to a particular optimization problem. These solutions are evaluated
to obtain their objective fitness values. Based on this objective fitness, a new population is

90

3.1. Population-based methods

generated through a variety of mutation and recombination methods which generates new
solutions to be evaluated. This process is then repeated until some stopping criterion is met.

Instead of relying on a rigorous treatment of the problem dynamics, these methods often rely
on heuristics and stochastic processes to explore and discover solutions to a particular problem.
They therefore usually do not guarantee to obtain a globally optimal solution. On the other
hand, they can be used on problems for which the task dynamics are not well known, for which
fitness landscapes are rough and unpredictable, and generally to explore large parameter and
solution spaces without a-priori knowledge.

Population-based methods are therefore often successfully used to perform exploratory
searches on open-ended problems. Due to the fact that often large populations need to
be used to obtain satisfactory results, they are particularly well suited for large scale off-line
optimizations, rather than on-line optimizations.

In Part II, we use population-based methods for the optimization of tasks related to human lo-
comotion for especially these reasons. There exist a large number of these type of optimization
algorithms and we briefly discuss the most popular ones here.

3.1.1 Genetic Algorithms

The genetic algorithm (Goldberg et al., 1989) is perhaps the most classically regarded population-
based optimization method. Inspired by naturally occurring evolutionary processes, in genetic
algorithms a selection algorithm determines which individuals in the current population are
considered fit for breeding offspring constituting the next generation. Mutation and cross-over
operations provide for exploration of the parameter space and diversity of the population.

Variations of genetic algorithms differ in their choice of selection mechanisms of which
there are many. Popular choices include tournament selection, roulette wheel selection and
elitism. Selection methods can also be combined to create new selection methods with certain
advantages on particular problem domains. Furthermore, different ways of generating the
offspring lead to a large variety of genetic algorithms.

One of the difficulties of using genetic algorithms is the fact that there are so many different
variants and choosing one that works well for a specific problem is not obvious. Additionally,
each variant has a non-trivial amount of parameters which need to be set and which can
significantly influence the performance of the algorithm.

3.1.2 Genetic Programming

Genetic programming (Koza, 1992) is a method for constructing task solving programs. The
algorithm finds its roots in genetic algorithms, but instead of optimizing the parameters of a
parametrized problem, it optimizes the structure of a program whose purpose it is to solve

91

Chapter 3. Optimization

the task. It can therefore be applied to problems for which the structure of the solution is not
known and which are thus hard to parametrize.

In genetic programming, programs are usually represented in tree-like structures and, similar
to genetic algorithms, a set of mutation and cross-over operations manipulate these trees to
obtain new sets of programs.

|
O

(a+cos(b)) * (sin(y) —5)

Figure 3.1 — Representation of a solution program generated by genetic programming for the
canonical problem of mathematical function fitting. Mathematical operators, variables and
numerical constants make up the alphabet of the genetic program. The resulting mathematical
expression represented by the program can be evaluated to obtain the quality of the solution.

As an example, consider the textbook case of fitting a multi-variate mathematical function to
a set of data (i.e. data modeling). The building blocks of the programs generated by genetic
programming are mathematical operations, variables and numerical constants. The goal is
then to construct programs (mathematical functions) which best explain the data. Figure 3.1
shows a canonical representation of a solution program as generated by genetic programming
for this problem. The generated program can be evaluated based on how well it explains
the data. From this, new programs are constructed using structural mutations (additions
of new nodes, removal of existing nodes) and by combining solutions through cross-over
operations to obtain a new set of candidate solutions. This process is repeated until a sufficient
explanation of the data is found.

The above example is one of the canonical applications of genetic programming, but certainly
not the only one. It has been successfully used for a variety of computer science problems such
as subroutine discovery (Rosca and Ballard, 1996) or uses in quantum computing (Spector
etal., 1999). It has also found applications outside of the computer science domain, such as
for the design of components with specific constraints (Lohn et al., 2005).

Although genetic programming is a versatile and useful technique, it also has several disadvan-
tages. For example, it can be hard to constrain the solution space of genetic programs. Multiple

92

3.1. Population-based methods

solutions with different internal structures can still perform the exact same computation.
Furthermore, just as with genetic algorithms, there are a possibly large number of algorithm
parameters to set.

3.1.3 Particle swarm optimization

Particle swarm optimization is in many ways an answer to the difficulties of using genetic al-
gorithms in practice. Particle Swarm Optimization (from here on referred to as PSO) is another
population based, stochastic optimization algorithm which has been a popular alternative
to genetic algorithms since it was first introduced in (Kennedy and Eberhart, 1995). In its
essence, PSO is a very simple algorithm, consisting only of two simple equations which govern
its dynamics. Conceptually, the PSO is a cooperative algorithm where the individual particles
share information about known solutions of the particular problem being solved. Shi and
Eberhart (1998) have proposed a slightly modified version of the original PSO algorithm, which
is often the algorithm used today when referring to PSO. The two equations describing the
whole algorithm are given in equation 3.4.

vi(t+1) = w-vi(O+ri-c - (Xi—xi(0) +riz2- c2- (Xg — x;(1))
xi (1) +vi(t+1) (3.4)

xi(t+1)

Here x; is the current position of particle i in the parameter space. It is thus the vector of real-
valued parameter values representing a particular solution to the problem being solved. v; is
the current velocity of particle i. Furthermore, r;; and r;,» are two random numbers uniformly
distributed between 0 and 1, X; is the best solution as found by particle i (its personal best)
and Xy is the global best known solution. The constants ¢; and ¢, determine the importance
of respectively local versus global search. Compared to the original algorithm as described in
Kennedy and Eberhart (1995), an additional term is introduced, the so called inertia factor w
(Shi and Eberhart, 1998). The purpose of w is to improve the convergence by smoothing the
parameter space and has been generally found to improve the performance of the PSO.

The algorithm as presented has only three parameters, the inertia factor w and the two
constants ¢; and c,. Although research has been done as to the importance and influence of
these parameters, they are usually (unless explicitly researched) set to the values 1.494 for both
c1 and ¢, and 0.729 for w which can be shown to guarantee convergence of the algorithm
(Clerc, 1999; Eberhart and Shi, 2000; Clerc and Kennedy, 2002).

Finally, to perform the optimization, an initial population of particles is generated each with
an initial position vector x; and initial velocity vector v;. Both of these vectors are usually
initialized such that they are randomly, uniformly distributed in a bounded parameter space.

93

Chapter 3. Optimization

We limit the maximum value of each dimension of the velocity vector to a fraction of the
distance from the minimum parameter boundary to the maximum parameter boundary
(Eberhart and Shi, 2000). This has been shown to give good results in general as there is more
exploration (in particular in the beginning of the optimization). After the population has been
initialized, at each iteration the fitness of each particle for the parameters x; is calculated and
X; and X, are updated accordingly. Then, for each particle, the particle’s velocity v; and x; are
updated using equation 3.4. The stopping criterion is often chosen to be a fixed number of
iterations or some measure of convergence.

¥

r

Figure 3.2 — PSO optimization of the Six-hump camel function as defined in equation 3.5. This
function has two global optima, at approximately the top and bottom center of the space
shown here. The particles start out with random initial positions and velocities in the 2D
parameter space. Particles then start to explore the parameter space based on their local and
global best known parameters. As the iterations progress (left to right, top to bottom), particles
start to converge on one of the global minima of the function.

Figure 3.2 shows an example of PSO optimizing a well known optimization test function, called
the Six-hump camel function, defined as

4
flx, = (4—2.1x2+%)x2+xy+(—4+4y2)y (3.5)

We look at the parameter space bounded by x € [-2,2] and y € [-1, 1], which contains two
global minima in this range, at (0.09,—0.71) and (-0.09,0.71). As shown in figure 3.2, PSO
is able to converge on one of the global minima. This also shows how PSO will only finally
converge on a single optimum, and which one depends on the initial conditions.

94

3.2. Metamorphic particle swarm optimization

3.2 Metamorphic particle swarm optimization

Since its original inception, the Particle Swarm Optimization algorithm (or PSO) (Kennedy and
Eberhart, 1995) has seen a considerable amount of attention in the evolutionary computation
community. Partly due to its simplicity and elegance, since then many new varieties of PSO
have been developed by researchers in the community trying either to address some of its
shortcomings (such as stagnation (Worasucheep, 2008; Evers and Ghalia, 2009), diversity
(Monson and Seppi, 2006) or niching (van den Bergh and Engelbrecht, 2004; Nickabadi et al.,
2008)) or to improve its performance tailored towards specific sets of problems (such as
multiple objectives or constraints (Ray and Liew, 2002; Parsopoulos and Vrahatis, 2002; Leong
and Yen, 2008)).

We now turn to look at solving such a particular set of problems: Namely, the optimization
of a problem for which a discrete set of solution classes exists , each with a (possibly overlap-
ping) subset of continuous parameters taken from the total parameter set. The optimization
then needs to take into account the discrete problem as well as optimizing the continuous
parameters used for this particular solution class. This might seem like an abstract problem,
but indeed, many real problems are formulated this way. Often we choose to optimize each
solution class of the problem independently or even manually and compare the results later.
This however is 1) not practical for problems for which a large set of different solutions exist,
2) inefficient for problems with a large possible solution set but a small probable solution
set, and 3) it can be biased by human intervention especially for the cases for which human
intervention is not sufficient. To solve these kinds of problems we require an algorithm which
1) makes informed, discrete decisions about which classes of solutions to explore and 2) finds
optimal parameter values for these classes of solutions.

The first contribution to solving discrete binary problems using PSO came not long after the
original PSO algorithm was published. In Kennedy and Eberhart (1997), the original author of
PSO details a version of PSO which uses probabilities of a discrete value switching from 0 to 1
(or the other way around) instead of the actual values as the parameters being optimized. More
recently, this approach was generalized in Clerc (2004) in which the definitions and operations
of the PSO (position, velocity, subtraction, external multiplication and move) are redefined for
the discrete domain. An extension of the original binary discrete PSO algorithm was presented
in Pugh and Martinoli (2006) in which discrete multi-valued problems are solved by adding a
probability for each possible value that the discrete variable can take. Here we take inspiration
from this work and use a similar approach to making discrete choices by using probabilities.
However, unlike in previous approaches we will define probabilities related to exploration
and exploitation similar to those used in PSO to search the set of discrete solution classes
while at the same time solving the continuous problem in each solution class. We see that
this allows for more control of the way the problem is solved while at the same time reusing
concepts from the continuous domain, which have worked well in general, to the discrete
domain. Although genetic algorithms and genetic programming could be used in a similar way
to provide the discrete part of the optimization, it has been shown in Bourquin et al. (2004)

95

Chapter 3. Optimization

that PSO performs better for the type of locomotion optimizations that we are interested in.
We are therefore interested here in reusing the collaborative/cooperative nature of the PSO in
the discrete part. The novel algorithm that we designed for this particular problem is called
Metamorphic Particle Swarm Optimization.

The following sections first describe the main MMPSO algorithm in detail. After this descrip-
tion we show some of the MMPSO properties on an example problem. Finally, we discuss
some of the applications of the algorithm and future work.

3.2.1 Metamorphic PSO Algorithm

We found PSO to be a well performing and easy to understand algorithm for a wide variety
of optimization problems. It often outperforms algorithms such as genetic algorithms (Ou
and Lin, 2006; Latiff et al,, 2007) in a variety of different domains it has been applied to. The
elegance of the algorithm, the small number of parameters (c;, ¢; and w) to tune and the
general performance are arguably some of its most prominent features.

The base PSO algorithm as described in the previous section works on continuous parameters.
What we are interested in, in this work, however is a combination of a discrete set of parameter
subspaces and a simultaneous optimization of each of these parameter subspaces (in which
the parameters are continuous). We have coined our algorithm Metamorphic due to the fact
that the it meta-optimizes the possible solution subspaces by morphing particles from one
subspace to another, reconfiguring its parameter space. Note that here we do not mean meta
optimization which is concerned about optimization of algorithm parameters or objective
functions.

We briefly describe a concrete robotics problem (explained in more detail in section 3.2.3) to
illustrate for which type of problems MMPSO was designed. Let us assume a certain robotic
structure with K degrees of freedom, for which we want to find control laws for locomotion.
Furthermore, let us assume that we can control each of these DOFs with three different modes
of control, namely 1) oscillation, 2) continuous rotation or 3) a locked constant offset. We now
have three choices of control modes to make for each of the K degrees of freedom. Instead
of making these choices manually, we designed MMPSO to explore combinations of control
modes for each DOF automatically. We will occasionally refer to this application of MMPSO in
explaining certain concepts of the algorithm.

Concepts and Terminology

The Metamorphic PSO Algorithm (hereafter referred to by MMPSO) has been specifically
designed for the type of problem described above. Still staying in the abstract domain, consider
the following problem containing 9 parameters to optimize as shown in figure 3.3.

This schematic representation of the parameter space consists of three entities (A, B and C)

96

3.2. Metamorphic particle swarm optimization

Figure 3.3 — Example parameter configuration of a single particle. Each of the parameter pools
A, B and C depict a discrete number of parameter groups. The group number is indicated
in the superscript of each box as well as by the background shading for clarity. In each pool,
only one group can be active and optimized at a given time. Parameters can overlap between
different groups as can be seen in pool B, where a valid set of parameters is either (4, 5), (5, 6)
or (6, 7). One complete subspaceis composed of selecting one group for each pool, for example
{(1), (4, 5), (9)}. There are a total number of 9 parameters in this example.

which we call parameter pools. A parameter pool in MMPSO is something which defines a
distinct number of possible parameters groupings active at a single given time. Thus, referring
to figure 3.3, in pool A only either parameter (1) or parameters (2, 3) are active. In the context
of MMPSO, we call these different parameter groups and in the text we indicate a group within
parentheses (). The groups within each pool are mutually exclusive. Although the groups are
mutually exclusive, the parameters in each group need not be. Indeed, as shown in pool B in
figure 3.3, parameter 5 is active both in group 1 and in group 2. Similarly, parameter 6 is active
in both group 2 and in group 3 (groups are indicated by a superscript in each box).

We have until now only explained the concepts of pools and groups. We still need to outline
the concept of parameter subspaces. Given the definitions of the pool and group above, a
parameter subspace is one, valid combination of groups chosen from each pool. In the text
we will indicate subspaces with braces {}. In figure 3.3 possible subspaces are {(1), (6,7), (8)}
or {(1), (4,5), (9)}. The total number of possible subspaces results from simple combinatorics
on the groups in each pool. In our example, the total number of subspaces would thus be
2x3x2=12.

To relate the MMPSO parlance to our concrete robotics example, each DOF is represented
by a pool and each control mode is represented by a group. Thus each pool contains three
groups (oscillation, rotation, locked) to choose from. A particular subspace is then a specific
combination of control modes for each DOE Note that unlike depicted in figure 3.3, each
pool here has the same configuration. The continuous parameters themselves are the control
parameters corresponding to each control mode (such as oscillation amplitude and offset).

97

Chapter 3. Optimization

The goal of MMPSO is to efficiently search for solutions within these subspaces, dividing effort
spent in each subspace based on a similar principle of collaboration as used by the base PSO
algorithm. To accomplish this we separate the algorithm in two layers.

The inner layer

The inner layer is defined as one instance of a subspace (i.e. there are 12 distinct inner
layers in our abstract example). Each inner layer runs an independent base PSO algorithm.
Particles initially are equally distributed over the different subspaces (note that there can be
more subspaces than particles in which case some subspaces remain initially unpopulated).
Although we use the base PSO algorithm as defined in section 3.1.3, it should be noted that
any extension or variant of PSO could be run without modification in the inner layer. The
main contribution of MMPSO is the way particles are transferred between subspaces in what
we call the outer layer.

The outer layer

The outer layer is a separate algorithm outside the inner layers responsible for migrating
particles from one subspace to another. Figure 3.4 shows a schematic representation of the
two-layered system. Each subspace contains a separate PSO and the outer layer migrates
particles between subspaces. A subspace best solution, X; is maintained in each subspace
and is the equivalent of the globally best known solution X, in the base PSO algorithm. We
also introduce a new X which represents a new globally best known solution known only to
the outer layer algorithm.

To transfer particles between subspaces we borrow the concept of the mutation operation
from genetic algorithms. The basic idea is to migrate a particle from one subspace to another
subspace based on migration probabilities. However, unlike in GA where a beneficial mutation
is automatically propagated to the next generation, we do not have such a concept in our PSO.
Simply moving particles from one subspace to another randomly chosen subspace will not
provide appropriate pressure to explore subspaces that have a higher overall fitness more than
other subspaces, since the particles are moved (and moved again) randomly.

To address this issue, we take inspiration from the concepts of local versus global search and
exploration versus exploitation from PSO and introduce three migration probabilities. The
exploration migration probability P,, defines the probability of a random migration of the
active group within each pool. The local migration probability, P;, defines the probability of
migrating to the group within each pool which is contained in the best solution known to that
particle. Similarly, the global migration probability, Pg, defines the same type of migration
probability as the local migration probability, but towards the globally best known solution Xg
over all subspaces.

Together, these three migration probabilities will govern the search of the different subspaces

98

3.2. Metamorphic particle swarm optimization

Outer Layer

Subspace 1 Subspace 2

Figure 3.4 — Schematic overview of the two-layered algorithm. Each of the subspaces contains
an independent PSO with a population set to the particles which are currently in the subspace.
The green (triangle) particle represents the best known solution for each subspace which we
call X; (this is equivalent to X, in the base PSO). The blue (rectangle) particle represents the
globally best known solution taken over all the subspaces and is only known only to the outer
layer algorithm. We call this solution Xg.

in a collaborative manner similar to how PSO tries to optimize parameters within a subspace.
We can now define the probability P(s; — sj|sc # s;) of each particle, migrating from the
current group (c) of a pool (s) to a group (j) different from c as given in equation 3.6.

P,

N-1

P(se— sjlsc # 55) = 1= (1= —==)- (1= Pyls; =)+ (1 - Pgls; = s)

N
P(sc— sjlsc=sj)=1=)_ P(sc — SklSc # sk)
k

P,+P+Pg=1 (3.6)

99

Chapter 3. Optimization

Here the notation P(a — bla # b) is used to mean the probability of a transitioning to b given
that b is different from a, thus the probability of a particle migrating from a particular group to
a different group. This probability is calculated from the probabilities P,, P; and Py as defined
above and N is the number of different parameter groups in the pool s. Furthermore, s; is the
parameter group [/ of pool s in which the locally best known solution of the particle has been
found and s; is the parameter group g of pool s in which the globally best known solution
(over all parameter subspaces) has been found.

Equation 3.6 proceeds to calculate first the probability of not migrating, which is given by
the product of the probabilities of not migrating due to, respectively, exploration (P,), local
migration (P;) and global migration (Pg). The probability of not exploring is given by 1 minus
the probability to migrate according to P, to any other group, of which there are N—1. Secondly,
the probability of not migrating towards the locally known best group can be calculated by 1
minus Py, given that the group to be transitioned to (s;) is the locally best known group (s;).
We have adopted the notation P;|s; = s; here to evaluate to P; when s; = s;, or 0 otherwise.
The probability of not migrating towards the globally best known group is calculated in the
same way. Finally, the resulting probability P(s; — s;j|s. # s;) is then given by 1 minus the total
probability of not migrating.

For completeness, the second equation provides the probability of staying in the same group
(i.e. not migrating at all). This probability is simply 1 minus the total probability of migrating
to any of the N other groups. In practice, only the first equation is used to calculate whether a
group needs to be migrated. Finally, to guarantee proper probabilities, the sum of P,, P; and
Pg must be smaller or equal to one.

The probabilities as described in equation 3.6 are proper probabilities in the sense that the
sum of all the probabilities equals to 1 (this can be easily seen since the probability of not
migrating is defined as 1 minus the sum of probabilities of migrating to a different group).
They are also defined correctly such that setting for example P, = 0.5 will cause on average
one particle per two iterations to migrate to each pool randomly.

As an example, figure 3.5 shows schematically the migration probabilities involved for a given
state of the pool B € s for a particular particle (as shown before in figure 3.3). The figure
portrays the case where the current group of B (B,) is group 1, or parameters (4, 5). The locally
best known group (B) is group 2, or parameters (5, 6) and the globally best known group (By)
is group 3. There are then three probabilities P(B;|B; = B), P(B2|B» # B;) and P(Bs3|Bs # B.)
which respectively represent the migration probability of 1) not changing the current group,
2) changing the current group from B; to B, and finally changing the current group from B,
to Bs. Using equation 3.6, these probabilities then become as shown in equation 3.7. We will
discuss ways to choose P., P; and Pg to design certain behaviors of the algorithm in section

100

3.2. Metamorphic particle swarm optimization

3.2.2.
P,
P(Bl_’BZ)=1_(1_?)'(1_Pl)
P,
P(Bl_’BS):l_(l_7)'(1_Pg)
P(By — B1)=1-P(By — By) — P(By — Bs) (3.7

7~ N
P(B;—- B,)

\ ¥
4l 5

N
B, = B, \ P(B; = B5)

B, P(B1=Bs) N\ 7 2

56
6f 7/

Figure 3.5 - An example of the migration probabilities involved in migrating the pool B € s from
one particular current group (B;) to each possible group of B. The probabilities P(B; — B;),
P(B; — By) and P(B; — Bs) can be calculated using equation 3.6. The resulting probabilities
(as functions of P,, P; and Pg) are given in equation 3.7.

1

Q
I

Pseudo Code

A very short and concise pseudo code listing for the algorithm is given in algorithm listing 1.
In short, at each iteration, a base PSO is run for each currently non-empty subspace. After this,
the best local and global group (s; and sg) for each pool are updated according to the fitness
of each particle. Finally, particles are migrated from one subspace to another by changing the
group in each pool according to the probabilities P,, P; and Pg.

3.2.2 Properties

There is only one set of parameters left for the user of MMPSO to choose. These parameters
are the mutation probabilities P,, P; and Pg. The values of these parameters are important

1. A fully working example of the MMPSO algorithm implemented in matlab is available at:

101

http://biorob2.epfl.ch/~jvanden/mmpso/mmpso_code_nicso_2013.zip
http://biorob2.epfl.ch/~jvanden/mmpso/mmpso_code_nicso_2013.zip

Chapter 3. Optimization

Algorithm 1 MMPSO

Subspaces: the set of all subspaces
Pools: the set of all pools
P: probability function of s; — s; with P, P}, Pg

1: function MMPSO

2 Particles — initializePopulation
3: while stopping condition not met do
4: for u € Subspaces, u # @ do
5: PSO(Particles U u) > base PSO on particles in u
6: for s € Pools do
7 {s1, sg} < updatePoolBest(s) > update s; and sg
8: for p € Particles do
9: for s € Pools do
10: migratePool(p, s, P(s¢ — SilS¢, S, Sg)) > migrate s, — §; using P

since they will completely govern the behavior of the outer layer algorithm. As such, they need
to be chosen carefully.

In general we would normally like to stimulate exploration early in the optimization, so the
various subspaces are explored sufficiently and general (sub)optima can be located. As the
optimization progresses, particles should start to focus more on their locally best known
subspaces to explore these in more detail. Finally, particles should start to converge on the
globally best known subspace to maximally optimize for that particular space during the late
phases of the optimization process.

To get this kind of behavior, we can design the mutation probabilities using probability curves
as functions of the number of iterations. Note that we assume here a stopping criterion based
on the maximum number of iterations. If a measurable convergence criterion is used, then the
probability curves can be a function of the convergence instead, however we have not explored
this possibility yet. Figure 3.6 shows one particular choice of the probability curves. Here we
used sigmoid shaped functions for the exploration and global exploitation probabilities, and
a Gaussian shaped curve for the local exploitation probability. Choosing the shapes of the
curves similarly to the ones shown in figure 3.6 generally works well.

Although we do not have a rigorous design methodology for the choice of these probabilities,
we have developed an emperical and procedure to choose initial values for the probabilities.
The basic procedure is to first estimate for how many iterations, on average, you want particles
to explore a give subspace. This is very much problem dependent and the usual procedure is
to perform a few optimizations and look at the fitness progression to see how many iterations

102

3.2. Metamorphic particle swarm optimization

it takes for particles to get a sense of how well a subspace can solve the problem. Then,
given the number of particles, probabilities can be choosen such that particles explore on
average that number of iterations in each subspace. It should be noted that this procedure is
very much a manual process, and a certain knowledge about the problem domain has to be
assumed (i.e. how difficult is the optimization process). Emperically, we found that obtained
results are not very sensitive to the exact choice of the probabilities, but we have not yet
done extensive studies to quantity this findings. Furthermore, future work includes automatic
tuning of these probabilities based on estimations of convergence, which should lead to better
automatic exploration and exploitation behavior without needing to manually choose the
correct probabilities beforehand.

0.5 T
— P,
0.4 F
. — Pg
>
£ 03|
=
<
Q0
E 0.2} \
0.1
0 |
0 100 200 300 400

Iteration

Figure 3.6 — Mutation probability characteristics for the exploration probability P,, local ex-
ploitation probability P; and global exploitation probability Pg, emphasizing early exploration
and late convergence.

Example

In this section we will briefly show some characteristics of the MMPSO on the most simple
numerical problem. Although the example is a trivial one, it makes it equally trivial to analyze
its behavior. In this simple example we are going to consider only two parameters, x and y,
both bounded in [0, 1]. We define one pool containing two groups. The first group is (x) and the
second is (x, y). Thus a particle either optimizes for only x or both x and y. We further define
two objective functions. The first is evaluated for particles optimizing {(x)} and the objective
is simply x itself, with a maximum value of 1. The second objective function is evaluated for
{(x,»)} and is given by 2 — (|x — 0.5] + |y — 0.5]), which has a maximum value of 2 at x = 0.5 and
y = 0.5. These objectives were chosen such that the maxima in both subspaces are at different
values of x, to illustrate the ability of the algorithm to find both.

The population size in this example is set to 40 particles and the optimization lasted for 70

103

Chapter 3. Optimization

f)=x flx,y)=2-(x—-0.5+|y—0.5])

Number of particles

20 40 20 40 60
Iterations Iterations

Figure 3.7 — Particle flow for subspace 1 (left) and subspace 2 (right). The green (upper) and
orange (lower) areas show respectively the in- and out-flow of particles in each subspace.

iterations. The probabilities P,, P; and Pg were respectively 0.01, 0.05 and 0.05, i.e. constant
which allows us to analyze their properties in a more straightforward manner than using
iteration dependent probabilities as show in figure 3.5. All particles were initialized in the
region [0,0.25] for both x and y to better show the effect of the particles converging on the
maxima.

Figure 3.7 show the flow of particles between the two subspaces. The particles quickly converge
on their respective maxima (not shown in the figure). For this simple problem, the population
sizes of both subspaces can be easily calculated in the limit of the iteration using equation
3.6. Given that all particles will at some point have visited both subspaces (due to P,), such
that the global best and local best are both located in the second subspace. This results in a
probability P(s1]s2) = P, and P(sz2]s1) =1—(1-P,)-(1 - P;)- (1 - Pg). Given the probabilities
as defined before, this results in P(s1|s2) = 0.01 and P(sz|s;) = 0.1. Thus the final populations
would be approximately, on average as given in equation 3.8.

N 40
SIIP(81|82)' ~01-— =37
P(s1182) + P(s2]871) 0.11
40
S2 = P(s5]s1) - 3 (3.8)

=~001-— =
P(81|Sz)+P(Sg|Sl) 0.11

Figure 3.7 show the trend towards these population sizes (though the simulation would have
to be prolonged further to approach these values).

104

3.2. Metamorphic particle swarm optimization

3.2.3 Applications

We briefly briefly discuss one previous application and one future application of MMPSO to
show how this algorithm can be applied to a specific set of robotics problems.

Automatic gait generation in modular robots

In Pouya et al. (2010) we explored the generation of locomotion gait patterns for a modular
robot named Roombots (Sprowitz et al., 2010) using MMPSO. This work did not focus on
the specifics of the optimization algorithm used, but rather on the control methodology of
generating locomotion for modular robots. One module of this robot has 3 degrees of freedom
(DOFs) (see Sprowitz et al. (2010) for details about the robot structure). One particular feature
which makes Roombots an interesting platform for studying gait generation is that each DOF
can continuously rotate, allowing a diverse array of locomotive behaviors. Two Roombots
modules joined together are termed a Metamodule. The goal of this work was to explore
locomotion modes of a Roombots Metamodule. The peculiar placement of the degrees of
freedom of the Metamodule however make it hard to design locomotion controllers by hand.

If all 6 degrees of freedom of the Metamodule would have the same control law, then a standard
PSO would have sufficed to optimize the various controller parameters. In this work however
we were interested in exploring combinations of three different control modes for each of
the DOFs: oscillation (i.e. sinusoidal), continuous rotation, and locked, in which the DOF is
controlled to remain at a certain constant offset.

To explore combinations of these different control modes, we have successfully used MMPSO
to select control modes for each of the DOFs. In MMPSO terminology, there were 6 (identical)
pools (one for each DOF). Each pool consisted of three parameter groups (one for each
control mode). The open control parameters to be optimized (for each DOF i) were the
oscillation amplitude R;, the oscillation or locked offset X; and a phase bias y;; controlling
the phase relationship between neighboring DOFs. The MMPSO pool for each DOF i is given
by: [(R;, X;), 0, (X;)], with groups for respectively the oscillation, rotation and locked modes.
Note that there are no parameters for the rotation mode and that the offset X; is shared
between the oscillation and rotation modes. In terms of MMPSO subspaces, there are a total
of 35 = 729 different subspaces to be explored. One possible MMPSO subspace is given in
equation 3.9:

{(RlyXI))(RZ’XZ)I(X?))’()’())(XG)} (3-9)

where the two DOFs are oscillating, the third and last DOF are locked and the fourth and fifth
DOF are rotating.

We ran MMPSO to optimize at the same time the control mode configuration and the control
parameters. One of the main outcomes of that work shows that allowing optimization of
so-called Hybrid control modes, selected by MMPSO, generally outperforms Pure control

105

Chapter 3. Optimization

modes (such as only oscillatory or rotational modes for all the joints). The choice of the migra-
tion probabilities P,, P; and Pg gives precise control over how many iterations (on average)
particles explore different subspaces and can be chosen informatively as it is straightforward
to calculate how much time particles remain in the same subspace on average. For more
details on this particular work, we refer to Pouya et al. (2010).

Co-design of mechanics and control of a wearable exoskeleton

MMPSO has been designed for applications where there are a certain (known) set of design
choices to be made for (sub)parts of the system. This leads to a combinatory number of
possible solutions to be explored. One interesting application of MMPSO for robotics is
the co-design of the mechanics (or morphology) and control of a robot. In chapter 5, we use
MMPSO for the co-design of the morphology and control of a wearable, non-anthropomorphic
exoskeleton. Briefly, the main idea here is to first assume the human body to be a given, fixed
mechanical structure. This “system” is then augmented with parallel structures composed
of various components (linear/revolute actuators and rigid links), composing the wearable
robot. Morphological parameters to be optimized are related to actuator placement and
segment lengths. At the same time, open control parameters for controlling the actuators
have to be optimized, which similarly to our work described before can have different control
modes. The augmented system can then be evaluated on certain tasks such as locomotion
assistance. MMPSO can be used here to explore the different combinations of mechanical
parts to construct the exoskeleton attached in parallel to the human body, as well as the control
of this exoskeleton, simultaneously.

3.2.4 Discussion

We have described a novel PSO based algorithm for optimizing specific optimization problems
combining real-valued parameters with certain discrete choices in the type of solution being
explored. Although the algorithm is suited only for these specific type of problems, we believe
that it provides a valuable addition to the variety of existing modifications of the base PSO
algorithm. The work explains in detail how principles of migration, inspired by genetic algo-
rithms, can be applied to PSO in a collaborative way such that multiple, partially-overlapping
parameter subsets can be explored simultaneously. The use of proper migration probabilities
which separate exploration, local exploitation and global exploitation and their semantics
makes choosing values for these probabilities well defined and understandable. The resulting
behavior can be analyzed in terms of these probabilities and makes it easier to design the prob-
ability functions. Furthermore, the two-layer approach of the algorithm allows for any number
of extensions of the base PSO algorithm to be used without any additional modifications to
the outer layer algorithm.

This work was published in van den Kieboom et al. (2013).

106

3.3. Multi objective particle swarm optimization

3.3 Multi objective particle swarm optimization

Particle swarm optimization, like many other population-based optimization methods, is a
single objective optimization method. Many optimization problems however have multiple
objectives. The classic, and relatively easy way, to incorporate multiple objectives in such
algorithms is to design an objective function which maps multiple objectives to a single
objective, using a transfer function. This method is often called aggregation or scalarization
(Coello, 1999). Effectively, the dimensionality of the objective space is reduced by projecting
the objective functions onto a single dimension.

The problem with this type of approach should be obvious. By reducing the dimensionality
through projection, an objective trade-off surface is created where combinations of different
objective values result in the same, indistinguishable reduced objective value. Two commonly
used objective aggregation functions are the weighted sum

fl® =2 aifi(s) (3.10)
and weighted product
f&=[1fi" (3.11)

, with f the final objective, s the problem solution, a; a weighting constant and f; the original
objectives. Both of these projections allow for manipulation of the trade-off surface through
weighting the individual objectives, however their objective gradient is not the same. Figure
3.8 provides an intuitive representation of the objective trade-off surface created by the two
projections.

Note that the optimal solution does not change, yet the gradient does. Therefore, the path to
get to the optimum has changed, and in a significant way. Following the gradient will result in
faster convergence towards the true optimum when using a product aggregation. Of course,
this is only clear for simple cases like the ones depicted above. In reality, objective functions
are much more irregular, and choosing the right projection beforehand can be difficult.

3.3.1 Multi objective optimization

The aggregation method as just explained does not actually represent a truly multi-objective
optimization. The reason is that even though aggregation methods create a trade-off surface,
the trade-off itself cannot be observed because all values on it are equal. It is therefore still
a global optimization (i.e. resulting in a single optimum found). On the other hand, multi
objective optimization is interested in retrieving the trade-off surface itself.

A good overview of various adaptations of PSO for multi objective optimization problems is
given in (Reyes-Sierra and Coello, 2006). For completeness, the most important approaches

107

Chapter 3. Optimization

xX+y Xy
10 \ \ \ \ 10 T T T T
A A A A A A A A A > o> o> > .
gl 7 7 7 7 7N gl > - - 7 7 2.
A A A 7 A AN > > > 2 AN
6l 2 A A A A A A A4 6> > = 7 7 AASEEAN
> A A A A A AN > > > A 2 7N
A2 A2 A A A A A A A 45 > > 72 A A A A 1
A A A A A A AR > F ANZ A ATSANEE
2 a0 A a2 2 A A S A I I e S B W S
V4 /‘ V4 ;‘v V ‘/ A ‘;v v V4 7“ 4 f‘ A ? A ‘1
00 2 4 6 8 10 0O 2 4 6 8 10
X X

Figure 3.8 — Comparison of the effect of two projections of multiple objectives. On the left,
a weighted sum aggregation leads to a linear trade-off surface between the two objectives.
While on the right, a weighted product creates a non-linear trade-off surface. Lines on both
plots indicate equivalent objective values while arrows indicate the gradient of the objective
function.

are listed in table 3.1.

3.3.2 Multi objective PSO using lexicographic ordering

Lexicographic ordering optimization is another multi objective optimization method from the
family of a priori optimization methods (Miettinen, 1999; Hu and Eberhart, 2002; Marler and
Arora, 2004). As the name suggests, a priori methods need some a priori known information
to reduce the set of Pareto optimal solutions in some way. The idea behind lexicographic
ordering is to pre-assign a fixed ordering to the objective functions. Given this ordering, the
objectives are optimized in sequence. Given a minimization problem, lexicographic ordering
base optimization is formulated as:

min f; (x) such that (3.12)
fix) < fij(x"), j=0,---,j=i-1 (3.13)

where f; is the jth objective function, x is a solution vector and f; (x*) is the optimal solution
of objective j. In other words, lexicographic ordering methods treat multiple objectives as
inequality constraints, which are optimized in sequence. Note that the optimal solution fj(x*)
has to be known for all but the last objective. If these optimal solutions are not known, then
lexicographic ordering can not be used.

To apply this, the main idea is then to consider N — 1 objectives to be objectives which can
be formulated such that they are considered to be optimal within some range. For example,
given an objective being locomotion at a desired speed, one can say instead that within

108

3.3. Multi objective particle swarm optimization

Table 3.1 — Multi objective PSO methods

Method Description

Sub-population In this approach, the population of particles is subdivided and
each sub-swarm thus created, optimizes a single objective. The
sub-swarms then share information about best found solutions
and recombine their populations accordingly.

Pareto Pareto based methods use the principle of Pareto optimality
to explore the multi-objective trade-off surface. A solution to
a multi objective function is said to be Pareto optimal if any
improvement in the direction of any one objective would neces-
sarily lead to a decrease in one or more of the other objectives.
Furthermore, one solution is said to dominate another if it is
better on every objective. The set of solutions that are Pareto
optimal lie on the Pareto front and the goal is then to find this
front. This is usually done based on the set of non-dominated
solutions (i.e. the currently known set of solutions which are not
dominated by any other solution).

Combined If nothing else, the PSO research community has an excellent
record of combining different methods to obtain new methods.
Partly due to the fact that PSO is a very simple algorithm, and
thus easy to extend, but also because many improvements to
PSO are developed orthogonally. Recombining methods is a pop-
ular way to create new and more complicated methods which
can be tailored to specific problem domains.

0.01 m/s of the desired speed, the difference is not significant. As soon as the objective of
speed is reached, the next objective (for example energy efficiency) can be optimized instead.
Multiple objectives can then be optimized in sequence until reaching the last objective which
is minimized until a termination condition is reached. The ordering of the objectives can be
significant, because it changes the search path. Whether or not this is a problem depends
on the reachability of the next objective through the fitness landscape, having satisfied the
previous objectives, and is problem specific.

Since particle swarm optimization is based solely on the ranking of solutions, and not on
absolute fitness values, lexicographic ordering can be readily applied. The optimization can be
designed by specifying N objective functions and N —1 objective constraints, which determine
when an objective has been satisfied such that the next objective can be optimized in sequence.
The N objective is minimized until a stopping criterion is met. Particles can then be ranked
first based on the number of objectives they satisfy (in sequence) and then based on their
fitness value of the current objective they are optimizing for.

As an example, let us look again at the example optimizatin of the Six-hump camel function as
shown in figure 3.2. We can separate the function from equation 3.5 into contributions from x,

109

Chapter 3. Optimization

y and the cross of xy:

4
felx,y) = (4 —2.1x% + %) x? (3.14)
[0y = (—4+4)yD)y (3.15)
Jry(x,) = xy (3.16)
Oy =fut fy+ fry (3.17)

Figure 3.9 shows the separated functions graphically. From these figures, it is straightforward
to see where the minima of this function should lie (i.e. the sum of the three figures). The sum
of the fy and f} functions creates two minima at the center top and center bottom. The effect
of fyy is then to skew these minima towards the top left and bottom right.

4-2.1x%+%)x? (—4 +4y2))2 xy
1
~ 0
-1
=) 0 2-2 0 2-2 0 2

X X X

Figure 3.9 — Separation of the Six-hump camel function into contributions from (left to right)
x, yand xy.

We can apply a lexicographic ordering method to the optimization problem by first optimizing
for fx(x, y), then for f(x, y) and finally for the full function f(x, y), in sequence. We formulate
the lexicographically ordered objectives by an objective and a condition until when the objec-
tive is to be optimized before optimizing the next objective. These objectives are listed in table
3.2. Note that the conditions are chosen somewhat arbitrarily in this example, but illustrate
the main idea behind lexicographic ordering.

Table 3.2 - Lexicographic objectives of separated six-hump camel function

Objective Until

1. fx(x,) fx(x,¥) <05
2. fy(x,y) fy(x,y)<-0.9
3. f(x,y) -

The results from running the lexicographic method based PSO are shown in figure 3.10. Here
particles are seen to first optimize for f, i.e. traveling towards the x center of the parame-
ter space, ignoring y. Then particles converge on the minima imposed by f) while finally
optimizing for the full function.

110

3.3. Multi objective particle swarm optimization

o 5
.,\ "SW oy g 3,61’
- J B
L % 53"
\ £y
y

¥

W
Sy
B Yy

<~

Figure 3.10 - PSO optimization with lexicographic ordering on the Six-hump camel function
as defined in equations 3.14 to 3.17. The particles start out with random initial positions and
velocities in the 2D parameter space. Particles then optimize for fy, f, and f in sequence and
finally converge on one of the global minima.

Although lexicographic ordering is argued to work well only when considering a small num-
ber of objectives (Coello, 1999), it lends itself naturally to optimization problems treated as
sequential learning of multiple objectives. Consider the example of optimizing a gait for a
locomotion task. There are several objectives involved in successfully completing such a task,
keeping balance as to not fall over, keeping enough ground clearance, gaining enough speed
and minimizing for energy expenditure. Naturally speaking, it would be hard and unpractical
to try to obtain all objectives at the same time. It is more important for example not to fall over
first, and only then to try to optimize your energy expenditure.

Finally, lexicographic ordering can be seen as a special treatment of Pareto optimality. Indeed,
since objectives are formulated as inequality constraints, improvements on a particular ob-
jective can only be made within the constraint space of the previously obtained objectives.
Furthermore, within the objective constraint space, objective differences are deemed insignifi-
cant. Therefore, in terms of Pareto optimality, solutions are always Pareto optimal with respect
to previous objectives. The difference is of course that whereas a Pareto based method will
try to explore the full Pareto front of multiple objectives, a lexicographic method does not
because objectives are only considered sequentially. In other words, it does not explore the
objective constraint space, other than to optimize for the next objective. It is therefore still a
global optimization method.

111

Chapter 3. Optimization

3.4 Large scale population-based optimization

Population-based optimization methods are computationally expensive. They rely on the
evaluation of large populations to effectively explore a problem’s search space. As the number
of parameters to be optimized grows, so must the population size. Additionally, depending
on the type of problem, it can take many iterations before the population converges to a
(locally) optimal solution. Finally, because most population-based optimization methods
are stochastic in nature (e.g. initial random population, random mutation operations, etc.),
optimizations need to be repeated to obtain statistically meaningful results.

During the course of this thesis, an open source framework was developed which makes it easy
to do these type of large scale optimizations on consumer grade, off the shelf hardware. Apart
from the fact that to the best of our knowledge, there currently do not exist good alternatives
to perform these type of optimizations in a managed, multi-user environment, there is little
novelty nor scientific value (in terms of research) in the design or development of this type
of framework. It is however a fundamental tool without which the presented research (and
others) could not have been done. Since it has been written for general purpose use, and
distributed freely, it provides a valuable scientific research tool.

3.4.1 Conceptual overview

Figure 3.11 shows a schematic overview of the optimization framework. There are three distinct
layers (user, server and workstation) in the system. The user layer runs the actual optimization
process which will produce tasks that have to be evaluated. These tasks are passed to the server
layer which queues them in a task queue. The server acts as a central hub to distribute any
tasks it receives to the available workstations. A workstation in turn receives a single task from
the server and executes it. When the task has been evaluated, the result is sent back to the user
through the server layer. The different layers can run on a single PC, but can also be placed on
different networked PCs.

The overall concept of the framework is such that no specific restrictions are placed on the
type of optimization algorithm or the manner in which a task has to be evaluated. Therefore,
the framework can easily be used for many different and concurrent tasks.

3.4.2 User layer

The user layer represents the front-end layer which is run by a user of the system. This layer is
responsible for running the optimization algorithm which produces tasks to be evaluated. As
can be seen in figure 3.11, each optimization, run at the user layer, is encapsulated in a Job
process. The job drives the optimization, sends tasks to the server layer, and feeds retrieved
results back into the optimizer.

The optimizer consists of a population (of tasks) that need to be executed, an optional function

112

3.4. Large scale population-based optimization

User Server Workstations

»| _matlab |

Result Result

Figure 3.11 — Schematic overview of the optimization framework architecture

which combines a multi-objective fitness evaluation into a single fitness value, and a data
storage to store the results of the optimization. The optimizer population is a set of tasks that
can be executed independently. For example, in genetic algorithms this would be a single
generation of individuals. These represent the set of tasks that can be distributed at the server
layer. The fitness function represents a mathematical expression that can be used to transform
multiple objectives into a single fitness value, used by the optimizer.

A description of the task that is sent to the server layer is given in table 3.3. Once a task is
executed, a result message as described in table 3.4 is sent back to the user layer.

Table 3.3 — Task Message

Name Description

Id A unique task identifier

Dispatcher The dispatcher with which to evaluate the ask

Parameters A {name — value} dictionary of parameters to be evaluated

Settings A {name — value} dictionary of settings to be passed to the
dispatcher

Table 3.4 — Result Message

Name Description

Id The unique task identifier

Status Whether the execution was successful or not

Fitness A {name — value} dictionary of fitness values

Data A {name — value} dictionary of additional, custom data to be

stored with this task/solution

113

Chapter 3. Optimization

Job specification

Jobs to be executed on the framework are specified in a simple XML format. It specifies which
optimization algorithm to use, specific parameters for this algorithm (if any), the problem
parameters to be optimized, the fitness function to use and which dispatcher should handle
evaluation of the task. An example of a job specification is given below:

<?xml version="1.0" encoding="utf-8"?7>

<job name="example">
<optimizer name="pso">
<!—— settings specific to the type of optimization algorithm ——>
<setting name="population-size">40</setting>
<setting name="max-iterations">200</setting>
<setting name="max-velocity">0.6</setting>
<boundaries>
<boundary name="speed" min="100" max="1000"/>
</boundaries>
<parameters>
<parameter name="left" boundary="speed"/>
<parameter name="right" boundary="speed"/>
</parameters>
<fitness>
<!—— combine two fitness values in a single fitness ——>
<expression>radius — from_origin</expression>
</fitness>
</optimizer>
<dispatcher name="codyn">
<!—— settings specific to each dispatcher ——>
<setting name="world">$SOPTIMIZATION_JOB_PATH/../simulator/impedance</setting>
<setting name="max-time">10</setting>
</dispatcher>
</job>

3.4.3 Server layer

The server layer consists of a single process which acts as a distribution center for tasks to be
evaluated. This layer is used to allow multiple optimization processes to be run, while sharing
the workstation resources that are currently available. The tasks are scheduled fairly with
respect to the estimated execution time and a task priority. The server automatically discovers
new workstations as they come online through a simple discovery protocol. When new tasks
are received from the user layer, it schedules these tasks (according to their priority) onto a
task queue. Whenever a workstation becomes available, the task is sent to this workstation to
be executed. The workstation then sends the result back to the server, which in turn relays it
back to the user layer.

114

3.4. Large scale population-based optimization

3.4.4 Workstation layer

The workstation layer is responsible for executing a single task, and sending the result back
to the server layer. Each task is received from the server layer with the task information as
specified in table 3.3. The worker process then resolves a dispatcher process from the task
description that is to be used to evaluate the task. When the correct dispatcher is located, this
dispatcher will be executed with the task that has to be evaluated. From the dispatcher, the
worker will receive a result in terms of fitness, which it then relays back to the server layer.

Dispatcher

Up to the dispatcher, the framework is entirely task agnostic. The dispatcher is responsible
for actually evaluating a task and there are several dispatchers provided in the framework.
Additionally, it is also easy to write custom dispatchers, for example for other simulators. There
are C++, Python and C# API’s available from which new dispatchers can be easily constructed.
A dispatcher is a simple standalone process which receives a task description on its standard
input and writes back a response on its standard output. Dispatcher management is entirely
handled by the workstation layer.

3.4.5 Results and analysis

All information related to running a task (i.e. all information in the job specification) and all
intermediate results of an optimization run are stored in a SQLite database. This is a convenient
way to store data in a structured way and SQLite is a widely supported format. Storing all
intermediate results leads to relatively large databases, but it allows for exact reconstruction
of the entire optimization process. This also means that running jobs can be suspended and
resumed, even in case of failure (for example accidentally closing the user process, or a crash).
Special care is taken to store the state of the random number generator so that resuming a job
at a later time does not cause differences in any way.

The obtained results database can be inspected using a graphical user interface providing
information on the fitness progression and obtained best solutions. Furthermore, the data
can be exported to be analyzed in Matlab using a provided toolbox.

3.4.6 Availability

The optimization framework software is made freely available under the GPL license. It is
made available at , including sources, documentation and
binary packages.

115

http://optimization.codyn.net/

Chapter 3. Optimization

3.4.7 Inthewild

The tools, simulators and optimization frameworks that have been developed in the course
of this part I have enabled, outside of the work presented in this thesis, a number of other
works of research. Both codyn, as well as the framework for large scale optimization have
provided opportunities which would have otherwise been more difficult and importantly,
more time consuming. Of course, the importance of having such software available should
not be overstated, it is certainly not essential. On the other hand, it does provide a set of very
convenient research tools which can be quickly applied. Here we briefly present works to
which both frameworks have contributed.

Roombots

In Sprowitz et al. (2010); Pouya et al. (2010); Moeckel et al. (2013), we used codyn to implement
a central pattern generator based controller for a modular robot called Roombots (Sproe-
witz et al., 2009). Here the large scale optimization framework was used to optimize various
locomotion controllers. By optimizing the controllers, gaits which utilized the unique, and
unintuitive to control, degrees of freedom of the Roombots to move around in ways that were
hard to engineer.

Co-evolution of morphology and control of virtual legged robots for a steering task

In Larpin ef al. (2011) we use co-evolutionary strategies to optimize for the control and
the morphology of legged robots, quadrupeds in particular. Here we evolved task specific
morphology and looked at how body structure influences the steering capabilities of relatively
simple robotic structures. At the same time, we used cddyn to easily create structured networks
of coupled oscillators for which parameters were optimized.

Model-based and model-free approaches for postural control of a compliant humanoid
robot using optical flow

Through the use of particle swarm optimization to train neural networks, postural control
of the CoMan robot using optical flow could be realized by learning a mapping from sensor
information to the adaptation of central pattern generators. Here codyn was used for the
implementation of adaptive frequency oscillators (Buchli et al., 2005) and the optimization
software was used to train the neural network.

3.5 Conclusion

In this chapter we have presented a general, but brief, introduction into optimization meth-
ods with a particular focus on population-based optimization methods. Population-based

116

3.5. Conclusion

methods make use of nature inspired algorithms where competition and cooperation play
important roles in the search for solutions to a problem. They are suitable for the open-ended
exploration of large search spaces and require due to their meta-heuristic nature, very little
knowledge of the problem domain.

Among many population-based methods, Particle Swarm Optimization is a relatively recent
method loosely inspired by swarming behavior of biological organisms. As a simple algorithm,
with very few parameters, it shows the capability of exploring search spaces, using cooperative
strategies.

We are interested in applying Particle Swarm Optimization to problems with variable param-
eter configuration spaces, where a fixed number of possible solution structures are known,
each with a corresponding (and possibly overlapping) parameter set. Examples of such prob-
lems include choosing between various actuator schemes (each scheme with its own set of
parameters) or the co-design of the morphology and control of a robotic structure, where the
possible desired set of structures are known.

To this end, we have presented our novel Metamorphic Particle Swarm Optimization method
which combines Particle Swarm Optimization with mutation operators inspired by genetic
algortithms to transfer particles between different parameter (sub)spaces. By applying cooper-
ative strategies to the parameter subspace tranfer probabilities, we show how the principles
from Particle Swarm Optimization for continuous parameters can be used also for the opti-
mization of discrete sets of parameter configuration spaces.

Finally, we briefly presented our open and freely available framework for performing large-
scale, population-based optimizations in a multi-user setting. The framework does not neces-
sarily present a novel approach to these type of optimizations, but has been instrumental in
several bodies of research. The value of the contribution is in the availability and ease of use,
allowing for rapid replication of results presented in this thesis. Due to its problem, task, and
task evaluation agnosticity, it can be generally applied beyond the work presented here and
can be a useful tool for anyone interested in doing large-scale optimizations.

117

Human locomotion and assistancejl:iyal!

119

Optimization of natural human gait

When it comes to research on biped locomotion in robotics, there exist several distinct research
directions. We briefly discuss several of the major approaches. When we look at the energetics
of bipedal locomotion, one area of research that has been fundamental is that of passive
dynamic walking (McGeer, 1990). Despite this works relative age in the field of robotics, it
has given key insights into minimal energy solutions for biped locomotion by maximally
exploiting the natural dynamics of the mechanical system. Passive dynamic walkers often
exhibit a remarkable similarity to human locomotion (Collins ef al, 2005), suggesting that
humans make use of similar concepts. Since its original inception, advances have been made
to increase stability and controllability (Wisse, 2005) and to move towards walking in 3D
(Collins et al., 2001; Wisse et al., 2001).

On the other end of the spectrum, one could argue, is biped locomotion by means of trajec-
tory/path planning. This often involves (indirect) control of the Zero Moment Point (ZMP)
(Vukobratovi¢ and Borovac, 2004; Vukobratovic and Juricic, 1969). Motions are planned such
that the ZMP, the point on the ground at which there is no net moment, remains within the
robot’s foot support area. This guarantees dynamic stability of the robot. The Honda humanoid
robot (ASIMO) is particularly well known to use ZMP trajectory planning (Hirai et al., 1998;
Hirose and Ogawa, 2007). More recently Huang et al. (2001) have shown that it is not necessary
to plan the ZMP trajectory in full. Instead one can use an iterative approach. In Kajita et al.
(2003), ZMP based control is combined with inverted pendulum based approaches, attracting
the robot towards a future ZMP reference. Although trajectory based approaches to biped
walking have been very successful, their resulting control is often stiff (position based) and
lacks the agility and dynamic of human walking.

Moving away from engineering solutions to biped locomotion, researchers have increasingly
been looking at biologically inspired walking. These works use biologically inspired artificial
muscle models (based on Hill-type muscle models of varying complexity) to model the major
human muscle groups. It has been shown that minimization of metabolic muscle energy is
a sufficient objective to obtain human like walking performance in these types of models
(Anderson and Pandy, 2001). Furthermore, using relatively simple muscle reflexes, natural

121

Chapter 4. Optimization of natural human gait

biped walking can be obtained in simulation (Geyer and Herr, 2010; Wang et al., 2012). These
works indicate that the biomechanical system is particularly well “designed” for locomotion.

One particularly important aspect of biomechanical systems that lead to its performance,
robustness and agility, is the ability to task-dependently change the impedance of the system
(Buchli et al.,, 2010). Variable impedance control has been used in human-robot cooperative
manipulation tasks, where it is important to be able to “give in” to the human collaborator
(Ikeura et al., 2002; Rahman et al., 2002; Duchaine and Gosselin, 2007). It has also been shown
that low impedance control can be beneficial to design robots that locomote both safely and
robustly. In Park (2001) the concept of variable impedance is applied to biped locomotion.
Joint trajectories are first generated using a gravity-compensated inverted pendulum model
(Park and Kim, 1998). The impedance between the feet and the ground are then modulated to
effectively moderate impact forces at ground contact and is shown to help in stabilizing foot
placement.

In this chapter we investigate the role of joint-level impedance control for humanoid loco-
motion. The use of impedance control, as opposed to position control, is inspired largely
by passive dynamic walkers. By allowing impedance to vary we expect that it is possible for
optimization to exploit the natural dynamics (i.e. low impedance) more easily. In particular,
we will look at the emergence of human like gaits by optimizing first principle objectives, i.e.
obtaining a characteristic human like gait without explicitly optimizing for it. Our first study
will develop a method for the simulation and optimization (using the tools developed in the
previous chapters) of impedance controllers to obtain a minimal model explaining various
global human gait characteristics. Having obtained this minimal model, the same methods
are applied to optimize for human like gaits on a model of a humanoid robot. We look at
the differences in obtained gaits and see the importance of (bio)mechanics versus a mimetic
approach for humanoid robot design. Finally, we design a simulated perturbation study to
investigate the emergence of the role of variable impedance towards disturbance rejection.

4.1 Human gait optimization

We begin by developing our method for the optimization of a minimal model for human gait
optimization and the role of joint-level variable impedance control. This study originated
from the following hypotheses

1. Human like gaits arise spontaneously when using impedance control and optimizing
only for mechanical energy expenditure.

2. Gait quality (kinematic similarity, global human gait characteristics) increases with
increasing modulation of impedance.

3. Energy expenditure decreases with increasing modulation of impedance.

122

4.1. Human gait optimization

We test these hypotheses using simulations of a simple humanoid model in the sagittal plane
while optimizing variable impedance controllers for each of the joints using Particle Swarm
Optimization. The remainder of the section is organized as follows. First we describe in section
4.1.1 the simulation model and control. We then continue to describe the optimization method
in section 4.1.2. Finally we describe the main results in section 4.1.3 where we confirm our
first hypothesis fully and show trends towards the second and third hypotheses. We conclude
with a discussion in section 4.1.4.

4.1.1 Model

The simulated biped is modeled after an adult sized human, using kinematic and inertial
properties derived from Winter (2009). Figure 4.1 lists these quantities as used in this work.
Note that the segment length / and center of mass quantities CoM, and CoM,, are specified
proportional to the total model height. The center of mass quantities are proportional to the
segment length / and the mass m is specified proportional to the total model mass. The model
height and mass used are respectively 1.80 m and 70kg in this work.

)
Joint CoM, CoM,, l m I'g
torso 0.000 0.030 n.a 0.678 0.90
up leg 0.000 —0.108 0.25 0.100 0.32 1.80m
low leg 0.000 —0.108 0.25 0.047 0.30
ankle 0.004 —0.002 0.04 0.011 0.48
toe 0.001 0.000 0.03 0.003 0.10

Figure 4.1 — Kinematic and inertial properties of the biped model. Kinematic quantities are
proportional to the total model height and the mass is given proportional to the total model
mass. rg indicates the segment radius of gyration, from which the inertia can be derived.
The schematic on the right shows approximate center of mass locations and contact point
locations on the foot (triangles).

We focus only on walking in the sagittal plane. Including the floating base, our model thus has a
total of 11 degrees of freedom. We only actuate the hip, knee and ankle joints of this model. The

123

Chapter 4. Optimization of natural human gait

toe joint is modeled using a critically damped spring with a spring constant of 122Nmrad~!.
The only biomechanical effect that we simulate is that of ligaments at the knee to prevent
hyper extension, by means of an exponential spring/damper (1, = K1, - (q; - q)® —Klg- g, with
Kl, =1e6, Kl =1e2 and gq; = —2°). This facilitates both the exploitation of passive force and
eases the optimization’s ability to find initial solutions.

The rigid body dynamics of this model is modeled and simulated using codyn. For the floating
base, we use a special planar joint (available in the codyn standard library) allowing rotation
on the Y axis, and translation in the X and Z direction. The human model is parametrized such
that we can easily change the total length and have all parameters automatically derived using
scaling laws obtained from Winter (2009). The contact model used for this particular study is
the soft contact model of codyn, i.e. a spring/damper contact model including basic coulomb
friction. Each foot has 5 equally distributed points on the bottom surface at which contact
forces are generated as soon as they penetrate the ground.

Controller

Each of the hip, knee and ankle joints are controlled using a simple variable impedance control
law. This control has the following form:

7 (1) = ki (0)(qi (1) — q: (1) = bi (D) i, (4.1)

where 7; is the commanded torque on joint i, k;(t) is a time varying stiffness pattern, g;(t)
is a time varying desired joint angle pattern, g;(¢) is the actual (measured) joint angle and
b;(¢) is a time varying damping pattern. Each of the control signals for the desired joint angle
g; (1), joint stiffness k;(¢) and joint damping b;(t) are time varying, periodic signals that need
to be specified to obtain the final control torque 7; at each time. Further references to these
variables will omit the explicit reference to time for brevity.

The actual control signals can be implemented in different ways, ranging from simple constant
values to highly complex signals. In this work we are interested in exploring the influence
of variable impedance control with respect to constant impedance control. Here we explore
three levels of increasing control complexity as defined in Table 4.1, 1) a constant value, 2)
a step function with controllable transition timing and 3) a piecewise polynomial function.
Note that ¢ is normalized on [0, 1] for one period of the signal. For the piecewise polynomial
function we chose the piecewise monotone cubic (N = 4) Hermite spline (Fritsch and Carlson,
1980) due to its ease of construction and monotonicity property (i.e. it does not overshoot).
We used 4 data points to interpolate the control signal. Furthermore, we ensure the resulting
signal to be continuous and periodic by constraining £(0) = f(1).

For the reference trajectory g we use the ppoly control type in all scenarios, using 4 data
points. Figure 4.2 shows nominal joint angles during normal walking for the hip, knee and
ankle. The piecewise interpolated trajectories show that 4 data points are sufficient (Ryip =

124

4.1. Human gait optimization

Table 4.1 — Control modes for k (same for b)

Type Function Parameters
1.constant f(f)=k k
_ ki, 11<t<T1)
2. step f) = { ko else k12,712
3. ppoly f@O=XNPa,t", Proyy<t<Pt, Pay Pty
ne[0,N]
p€l0,K]

Nominal Gait Trajectories

80 —H —e— Hip Knee —=— Ankle

A
60 - N

Joint Angle (°)

0 20 40 60 80 100
Gait Cycle (%)

| | | | | | | |
Z\ \ 2.)_ llf !_’\ { ,\ (T S
Figure 4.2 — Nominal joint angle trajectories, taken from Winter (2009). The dashed lines show

the result of piecewise interpolating the data points, resulting in a sufficient representation of
the nominal joint angle trajectories.

0.999, Rinee = 0.998, Ranige = 0.988) to represent the nominal trajectories and preserve its
primary characteristics.

Stability

It is possible to find solutions which have a stable steady state gait cycle (i.e. that do not fall
over) only by means of the joint impedance control laws. Getting into this steady state however
is not trivial without explicitly taking care of the gait initiation (on which we do not focus in
this work) or adding active balance controllers. Instead we chose to add a simple external
assistive torque on the floating base rotation degree of freedom during the initial phases of

125

Chapter 4. Optimization of natural human gait

optimization: 7, = Kay- (44— q) — Kag g, with Ka, = 3000, Ka, = 20 and g, = 5°. This simple
assistance is sufficient to allow the optimization to find initial walking solutions. Note that
there is a neutral zone of +¢, in which no assistive torque is provided. Also, the final solutions
do not require the assistive torque except during initiation since they are optimized to stay
within the neutral zone.

4.1.2 Optimization

The optimization algorithm used to optimize the control parameters is Particle Swarm Opti-
mization using lexicographic ordering to optimize for multiple objectives in sequence (see
section 3.3.2 for more details). Note that this is a standard PSO and not the previously devel-
oped MMPSO since we do not need to optimize the structural space. The constriction factor
K and constants ¢y, ¢, were set to K = 0.729, ¢ = ¢po = 2.05 as to ensure convergence of the
swarm (see Clerc and Kennedy (2002)). The maximum velocity of the particles is limited to 0.6
(normalized to the parameter boundaries) and particles are set to bounce off of parameter
boundaries (by means of reflecting their velocity vectors).

Objectives

We have three main objectives for the optimization: 1) we want to walk forward at a specified,
constant speed, 2) we want to have a stable walking gait without the need for external assistive
torque, and 3) we want to minimize the overall energy expenditure. We focus on walking at a
specific, desired speed to restrict our method to exploring walking at a speed which should
naturally lead to energy efficient locomotion. For 3) we choose torque being the simplest, first
approximation of energy expenditure. In our approach, we do not explicitly optimize for other
global gait qualities such as kinematic similarity to human data, since we hypothesize that
human gait kinematics are a natural product of minimization for energy. However, to avoid
exploitation of certain simulation inaccuracies (such as the contact model approximation) we
add one additional criterion which specifies that at least one foot has to be in contact with the
ground at any given time. This prevents exploiting the spring of the contact model to store
and release energy, making the model jump from the ground.

To use lexicographic ordering, we formulate the just stated objectives as sequences of objective
functions and constraints, as explained in section 3.3.2.

Table 4.2 lists the sequence of objectives stages that we used (objectives are maximized). The
first stage ensures that solutions are simulated for the maximum amount of time without
falling over. The second and third stage ensure that the solution reaches the desired target
speed, with a maximum defined standard deviation of the measured speed over the whole
gait. Speed match is the measured speed as a fraction of the target speed. We thus require
speed to be within 95% of the desired target speed. We chose a walking frequency and speed
based on data from Winter (2009) for normal walking. For all experiments, we set the desired

126

4.1. Human gait optimization

Table 4.2 — Lexicographic Objectives

Objective Until

1. time time = maxtime
2. speed match speed match > 0.95

3. -std speed std speed < 0.1

4. -assisttime assist time = 0

5. -non contact time | non contact time = 0

6. -torque 00

forward locomotion speed to 1.3ms™! (or 4.7kmh™!) and the walking frequency to 0.9 Hz. The
fourth and fifth stages optimize for walking without assistance while having at least one foot in
contact with the ground at all times. Finally, the last objective minimizes control torque as long
as all conditions 1-5 have been fulfilled. Since we do not take special care of gait initialization,
the initial seconds of the simulation can exhibit non-steady state behavior. We therefore ignore
data from the first half of the evaluation period for all measured objectives, except time.

Note that as mentioned in section 3.3.2, the ordering of the various objectives can influence
the optimization process. Although we did not extensively explore the effect of ordering, we
emperically verified that it is important for the optimization to first optimize time and only
then match speed. The reason is that this ensures that average speed is always measured over
the whole simulation time (i.e. the model does not fall over). Although this is not the only
manner in which this behavior can be achieved (for example, one could optimize explicitly for
distance), the chosen objectives are simple and prevent exploitation of specific simulation
artifacts.

Parameters

We use a differential encoding 6 x for the x position of the ppoly data points, such that x; =
Zj. 0x j/Zﬁ.V l5x i Note that we need N + 1 parameters for 6 x to satisfy the constraint that
ZfV(S Xi = 1.

Table 4.3 — Optimizing Parameters

constant | step | ppoly
angle P;Xkﬂ
stiffness Kn.k.a k;ﬁa ; kp o
damping brea | D, 7| B
number w-s 33 | 45 | 81

Table 4.3 lists the parameters to be optimized for each of the three different control modes.
The subscripts h, k and a refer to respectively the hip, knee and ankle joint. We have adopted

127

Chapter 4. Optimization of natural human gait

the superscript " notation to indicate the parameters required for piecewise interpolation of
N data points, which resolves to N + 1 parameters for 6 x and N parameters for k, b or p (thus a
total of 2N + 1 parameters are required). For the constant control mode, we need one stiffness
and one damping parameter for each joint. The step mode needs one additional stiffness and
damping parameter for each joint, as well as two parameters f; » determining when the step
occurs in the gait cycle. Finally, for the ppoly control mode we need the same parameters for

stiffness and damping as we have for the joint angle. The bottom row of the table shows the
total number of parameters being optimized for N = 4.

100
80 pmmm . Q .
T : . ." “‘
] Ol
E ' '
= 60® - —
[" R
1 L4 . 0
A b [A L
§ 40 s & 7
K o oy
% K4 : ‘—’" *] kp
c",'s .‘_ S 5X§l .
20p=m=--7-0 L -
R vf
- 1 “n
°]
O | | |
0 20 40 60 80 100

Gait Cycle (%)

Figure 4.3 — Example hip stiffness signals resulting from the const (blue solid), step (green
dashed) and ppoly (red dotted) control modes. The large dots represent the control points
which need to be optimized to obtain the resulting signals. We only annotated one pair of
parameters per signal in the figure for clarity (e.g. £, and kfl are not shown). Note that we need
N + 1 parameters for 6 x and N for y (here shown for N = 4) for the ppoly signal.

Figure 4.3 shows example signals for each of the three control modes. Note that the more com-
plex encodings also include all signals that can be obtained from the less complex encodings
(i.e. the encoding for step can generate all const signals).

Stiffness values are bound in [0, 12000]Nmrad~! and damping values in [0, 60] Nmsrad™".
The upper limits were determined empirically resulting in a very stiff controller. Joint angle
parameter values are bound in [-0.8, 0.8], [-0.1, 1.5] and [-0.6, 0.6]rad for respectively the hip,
knee and ankle joints. These values conservatively contain nominal joint angle trajectories.

Experiments

We run the PSO with 120 particles and for 500 iterations. Note that we use a relatively large
number of particles since 1) we have a large number of parameters to optimize and 2) it is
difficult to find initial solutions that manage to walk a few steps (which can then be refined).

128

4.1. Human gait optimization

We have thus used conservative numbers for particles and iterations which could possibly be
reduced. Note that the proposed optimization strategy is used purely for offline evaluation of
control laws and not as an online optimization procedure. For each control condition, we run
the PSO 10 times with a randomized initial population. This results in a total of 30 runs of PSO,
and a total of 1.8 million evaluations. We run this optimization on a cluster with 127 cores
(11 dual quad core Xeon E5504, 2 GHz and 7 dual hexa core Xeon E5-2430, 2.2 GHz), using the
large scale optimization framework developed in section 3.4. A single run took approximately
one hour of real time.

4.1.3 Results

On average, the objectives as listed in 4.2 take respectively 2, 7, 13, 71 and 87 iterations for the
first solution to be found that matches its constraints. Furthermore, on average 360 iterations
out of the 500 iterations are spent optimizing for torque. During this time, the torque is reduced
between 3 to 4 times.

| | | | | | 1
const \ ‘. ‘ I .‘ \
R A AP P f
| | | | | |
sep A A Q Il ll
1./.)_4..(.{’« }
| | | | | | |
ppoly A A b N 'L | Z\
/\!’ 2!— !2 GL\/ '{ ‘ !¢
T
stance (= 60%) swing (= 40%)

Figure 4.4 — Snapshots of one gait cycle of the best obtained solutions from optimization for
each control mode. The gait is shown from heel-strike to heel-strike. All three gaits show similar
characteristics and look qualitatively human like. The ppoly gait shows full knee extension,
while the other two control modes show the knee slightly flexed. The torso leans slightly
forward in all cases.

Figure 4.4 shows snapshots of one gait cycle for the best solution, in terms of torque, of each
control mode. Even though there was no explicit objective to optimize for specific gait qualities,
several global human gait characteristics can be observed. All gaits feature heel-strike, foot-roll,
heel-rise, toe push-off and a double support phase. We also obtain a stance duration of = 60%
of the total gait duration, which is the same as the stance duration in normal human walking.
Another characteristic of human gait is the occurring double peak in ground reaction force,
caused by heel-strike and then toe-off. We observe a similar double peak in ground reaction
force in our simulation results (data not shown).

Table 4.4 shows the obtained average and best obtained results for the three control modes. In
all cases, the optimization reached the last stage, minimizing for torque. In addition to the
minimum torque, Table 4.4 shows the correlations ¢, ¢ and c;between the hip, knee and

129

Chapter 4. Optimization of natural human gait

Table 4.4 — Average Performance

Average ‘ Best
7(0) Cn(0) Cr(0) Ga0) | T o o ca

const 232.3(44.3) 0.94 (0.07) 0.68(0.30) 0.17(0.50) | 161.6 0.98 0.68 0.17
step 190.9 (63.3) 0.85(0.07) 0.58(0.35) 0.26(0.22) | 108.6 0.96 0.90 0.54
ppoly 216.3(56.1) 0.93(0.05) 0.76(0.13) 0.21(0.27) | 146.7 0.89 0.69 0.13

Ankle
40 40
= 20 20
= 0
S 0
-20
-20
—40
40 40
20
o 20
2 0
% 0
-20
-20
—40
40T 1 40
20 20
= 0
= 20
b -20
-20 0

-40

| | | | | | | | | | | | | | | | | | | |
AL U AL N ML e N
Figure 4.5 — Obtained joint angle kinematics after optimization. All angles are shown in
degrees. The dotted lines are average human joint kinematics for normal walking (Winter,
2009). The solid lines are resulting joint kinematics after optimization, for the 5 best obtained
solutions. Each row shows one of the const, step and ppoly control modes. The hip kinematics
strongly correspond to normal human walking. For the knee, best results in terms of matching

kinematics are obtained for the ppoly control mode. Ankle kinematics on the other hand are
more consistent for the step control mode.

ankle joint angle kinematics and average human kinematics. The resulting kinematics are
shown in figure 4.5. The kinematics of the hip are consistently close to normal human hip
kinematics for all three control modes. The knee and in particular the ankle kinematics, on
the other hand, do not resemble human kinematics to the same extent on average. For the
knee, we generally find less flexion during swing and we do not always obtain the extension —

130

4.1. Human gait optimization

Position Stiffness Damping

150 - N

100 [1 o5l i

const

150 | s
100 - - 05

step

150

100

ppoly

nu--..\....o’

~ /J

°

AMIZEN NN AN

Figure 4.6 — Optimized joint control signals. The hip, knee and ankle signals are shown in
blue (solid), green (dashed) and red (dotted) respectively. The position plots show both the
reference signal (thin solid) and the resulting (measured) joint angle. Joint angles are shown in
degrees, stiffness in Nmrad~'kg~! and damping in Nmsrad~'kg™!. The const control mode
stiffness is high for both the knee and hip joint, resulting in a close match between reference
and actual joint angles. The step control mode features relatively low stiffness patterns, while
still providing close tracking of the reference joint angle. Both the hip and knee joint tend to
stiffen during heel-strike, presumably to stabilize ground impact.

flexion — extension during early stance. The ankle joint consistently shows more dorsiflexion
as well as a higher peak plantarflexion. Furthermore, it tends to dorsiflex later during swing
than normally observed in human walking. Whereas in normal human walking, the knee
flexion during swing provides sufficient ground clearance, we observe that instead in our
results the prolonged plantarflexion pushes the model upwards to provide ground clearance
for the swinging leg.

However, if we look at the kinematics of the best obtained solution only (instead of averages
over multiple runs), we see relatively high correlation of joint angle kinematics for the hip
and knee between simulation and human data. We obtain Ry, = 0.80, Rgpee = 0.83. The ankle
kinematics show low correlation with human kinematics, Ranke = 0.30. It is clear that although
we capture some important aspects of human gait with our optimization, we do not yet explain

131

Chapter 4. Optimization of natural human gait

all aspects using our (relatively simple) model.

Looking at the obtained average and best torques for 10 runs of PSO in Table 4.4, we can see
that the step and ppoly control modes perform slightly better than the const control mode,
even if there are a significantly larger number of parameters to optimize. Note that the ppoly
control mode includes the const control mode and should therefore in general be able to find
solutions performing at least as good. However, due to the increased number of parameters,
and the limited number of runs with different initial conditions, we did not obtain better
results than the const mode.

Figure 4.6 shows the optimized joint reference, stiffness and damping control signals for each
of the control modes. Note that the hip and ankle stiffness in the const control mode are
relatively high, while they are relatively low in the step control mode. Furthermore, we see
that for both the const and step control modes, the knee stiffness is very small, being almost
only damped (i.e. exploiting the natural leg dynamics). The obtained joint trajectories match
the control trajectories for const and step, but less so for the ppoly mode. We can see a clear
trend in the stiffness and damping patterns of the step mode. Here the hip and ankle joint
tend to stiffen during heel-strike, while the damping is optimized for low values during swing
(allowing natural swinging motion of the leg). We do not observe these trends as much for the
ppoly mode.

4.1.4 Discussion

In this work we started by posing three hypotheses about the implications of variable impedance
control for human locomotion. We have looked at a minimal model implementation of a hu-
manoid in simulation, and the most simple approximation of energy expenditure. Towards
our first hypothesis, we show that human like gaits can be obtained from optimizing for first
principles only. Characteristics of nominal human gaits such as heel-strike, foot-roll, toe-off
and a 60% stance duration are all observed without optimizing for these characteristics ex-
plicitly. Furthermore, best obtained kinematics show a reasonable correlation to nominal
human joint angles for the hip and knee joints, although less so for the ankle joint. We have
two possible explanations for the mismatch in joint angle kinematics which we should explore
in future work. First, our model is only defined in the sigattal plane, and we observe that one
of the difficulties is obtaining sufficient ground clearance for the swing leg. It is possible that
early during the optimization, solutions are favoured which provide ground clearance in an
unnatural way, simply to stabilize the gait. Another possible explanation for the discrepancy
is that we use a very simple model of energy expenditure, namely torque. Furthermore, all
joints are penalized for torque equally, while it might be more energy costly to generate these
torques at distal joints than at proximal joints. A weighting scheme to penalize torques at
different joints differently can be explored to see how this affects the obtained gait quality. At
the same time, a more sophisticated, biologically inspired model for metabolic cost can be
explored.

132

4.2. CoMan humanoid robot gait optimization

Our second hypothesis poses that even though we do not explicitly optimize for gait quality,
introducing variable impedance implicitly improves gait quality by optimizing only for energy
expenditure. Towards this hypothesis we observe some trends, in particular in the step control
mode in terms of improved joint angle consistency (ankle). Furthermore we observe a relatively
low stiffness pattern with a tendency to stiffen the hip and ankle joints during heel strike, and a
damping pattern which decreases damping during swing. Furthermore, there is clear evidence
for the exploitation of the natural leg swing dynamics by the knee joint, as it shows to have
optimized a very low stiffness. During the stance phase, the knee has a significantly increased
damping in the step control mode which breaks the knee motion. This is also observed during
normal human locomotion (Martinez-Villalpando and Herr, 2009) and one of the principles
of passive dynamic walking (McGeer, 1990; Wisse, 2004).

Although we expected to see a clear reduction in torque when introducing variable impedance
in the controller, we observe smaller improvements in overall torque consumption than we
initially expected. We observed a notable reduction of torque in the step mode, but did not see
the same (or further) reduction for the ppoly mode, indicating that our optimizations might
easily get stuck in local optima.

This work was published in van den Kieboom and Ijspeert (2013). A video of the resulting
optimized walking gait can be found at

4.2 CoMan humanoid robot gait optimization

The work presented in the previous section shows that given the (bio)mechanical structure
of a human adult-sized person, global human gait characteristics can be obtained from
optimization of high-level objectives and simple control laws only. In this section we present
work which continues in this direction, looking at several new aspects.

1. We want to know how well this method translates to a humanoid robotics platform. Hu-
manoid robots are certainly inspired by human physiology, but they also have significant
differences. In particular, we are interested in looking to apply this method to a model
of the CoMan (Compliant Humanoid) robot, which is not only of smaller scale than an
adult sized human, but also has different inertial properties, power requirements and
importantly, feet.

2. In our previous study we were specifically optimizing for walking at an average — and
supposedly energy efficient — walking speed. Doing so would let us simply minimize for
overall torque during walking to obtain a sense of energy efficiency. However, for the
CoMan we do not have a good estimate of the walking speed at which the system enters
an energy efficient mode. We will therefore look at optimizing/discovering the optimal
walking speed simultaneously.

3. The objectives previously used to optimize for a human gait included various artificial
objectives which stabilized the optimization process, avoiding exploitation of unphysical

133

http://thesis.codyn.net/videos/human_walking

Chapter 4. Optimization of natural human gait

dynamical behavior. We expected that these issues were caused by the contact model
and we address these issues in this section.

4. Finally, we expect that the role of variable impedance control becomes more prominent
if we look at perturbations during gait. In the previous section we could see a trend
towards variable impedance being optimized around the moment of heel-strike, which
can be seen as a particular type of perturbation. Here we will explore this by introducing
a periodic force perturbation during the swing phase.

The remainder of this section is organized as follows. First, we will briefly describe the CoMan
humanoid robot. Then we will continue by detailing the codyn model based on the robot
specifications. What follows then is two studies. The first will look at reproducing the results
obtained in the previous section using the same methods, while optimizing walking speed
and reducing the objective complexity. Having optimized for walking with the model of the
robot, the second study will then look at the influence of perturbations on the optimization of
variable impedance control laws.

This work was carried out as part of the WALK-MAN project. WALK-MAN is funded under the
European Community’s 7th Framework Programme: FP7-ICT 611832. Cognitive Systems and
Robotics: FP7-1CT-2013-10

4.2.1 CoMan humanoid robot platform

The CoMan is a child size, humanoid robot which has been developed by the

in Genoa as part of the . Shown in figure 4.7, the
robot is approximately 1.2m tall, comparable to a 6-7 year old human child, and features 23
degrees of freedom, of which there are 6 in each leg. The CoMan, as its name suggests, has
been specifically designed to be an intrinsically compliant robot using series elastic actuators.
The version shown in figure 4.7 has compliant joints in the shoulder pitch/roll, elbow pitch,
waist pitch/yaw, and hip/knee/ankle pitch joints. Each actuator has a maximum torque limit
of 30N m and a velocity limit of 6rad s~!. Modeled after a human child, it has the same limb
length ratio’s as an actual human child. The weight of the robot is approximately 28kg. Note
that the average weight of a human child of the same size is around 22kg to 25kg (Cavagna
etal., 1983) and the CoMan is thus slightly heavier.

The robot is fully sensorized, with proprioception at every actuator, a 6-DOF force/torque
sensor placed under each foot, an IMU at the base of the robot (measuring velocities, accel-
erations and direction) and finally torque sensors at each actuator. This allows the robot to
operate in full torque control. This is essential for the implementation of (virtual) impedance
control laws on the platform.

134

http://www.iit.it/
http://www.iit.it/
http://www.amarsi-project.eu/

4.2. CoMan humanoid robot gait optimization

(a) IIT version (without covers) (b) EPFL version

Figure 4.7 — Developed by the Istituto Italiano di Tecnologia, the CoMan is a child size, hu-
manoid robot with series elastic compliant actuators. It has 23 degrees of freedom, among
which there are 6 in each leg. a) an earlier version of the robot without its covers (image taken
from the IIT website). b) the CoMan version at EPFL.

4.2.2 Modeling the CoMan robot

The model for the CoMan is constructed in the same way as the model of the human in the
previous section. The kinematic and inertial data is based on data retrieved from the CAD
model of the CoMan, provided by the IIT. Since the data is provided for the full 3D CoMan, we
composite all the bodies corresponding to the joints that we do not model in 2D. Figure 4.8
lists the kinematic and inertial quantities of the model. Again, the center of mass locations
CoM; and CoM,, as well as the segment length [are given in proportion to the total robot
height (1.2m). The masses m are given proportional to the total mass of the robot (28kg).

On comparison with the quantities shown in figure 4.1 (i.e. for the adult size human model),
we see that the largest discrepancy between the two models is caused by the center of mass
location of the torso. In the CoMan, the center of mass is located much higher than for an
average person, which can have a negative impact on the stability. The reason for this is the
fact that there are 6 heavy motors located at the very top of the torso (2 of these are deactivated,
but present motors to control the neck). Additionally, the torso also contains the control PC
and several communication and controller boards.

Another important difference, in particular for locomotion, can be found in the dimensions

135

http://www.iit.it/
http://www.iit.it/en/advr-labs/humanoids-a-human-centred-mechatronics/advr-humanoids-projects/compliant-humanoid-platform-coman.html

Chapter 4. Optimization of natural human gait

Joint CoM, CoM,, l m I'g

torso 0.00 0.18 n.a 0.530 0.11
up leg 0.00 -0.08 0.19 0.132 0.09
low leg 0.00 -0.07 0.17 0.052 0.05
ankle 0.00 -0.02 0.08 0.051 0.03

1.20m

0.03

<>

7 @

< >

0.07

Figure 4.8 — Kinematic and inertial properties of the CoMan model. Kinematic quantities are
proportional to the total model height and the mass is given proportional to the total model
mass. rg indicates the segment radius of gyration, from which the inertia can be derived.
The schematic on the right shows approximate center of mass locations and contact point
locations on the foot (triangles).

of the foot. Comparing / of the ankle (i.e. the distance from the ankle rotation to the sole of
the foot) in both figures 4.1 and 4.8, then this distance is around 3% of the total height for
adult size humans, but 8% of the total height of the CoMan. The foot on the CoMan is also
completely rigid. For this study, which is in the sagittal plane, the rigidity is not important
since we use point contacts. however, the length of this rigid foot is 16% of the total robot
height. Looking at figure 4.1, we can see that the nominal foot length would be approximately
10% of the total body height. The CoMan feet are therefore significantly disproportionate with
respect to its height.

We initially did simulations with a model of the feet corresponding exactly to the dimensions
of the feet on the real robot. This however led to unsatisfactory results. None of the simula-
tions resulted in human like gaits, since proper heel-strike, foot-roll and toe-off could not
be achieved with such large contact surfaces. Due to the location of force torque sensors in
the feet, we cannot easily change the distance from the ankle rotation to the sole of the foot.
However, the foot contact plates are easily replaced. We therefore adopted a foot length closer
resembling human morphology in our model, as shown in figure 4.8. It should be noted that
at the time of writing a corresponding real foot has not yet been manufactured.

136

4.2. CoMan humanoid robot gait optimization

Contact modeling

As the hard contact model in codyn was not yet available at the time of the previous study, the
soft contact model was used instead (see section 2.6.10). We managed to avoid unphysical
behavior of this model by carefully tuning the contact coefficients and adding additional,
artificial objectives to penalize unrealistic behavior. This however led to a formulation of the
optimization which was more complex than we originally had hoped to achieve.

In this study, we will make use of the hard contact model which since has been available in
codyn. As seen in figure 4.8, we also no longer need to model multiple contact points for each
foot (which previously made the soft contacts more stable), but instead can model contacts
on just the end-points of the two feet. This led to significantly more stable simulations and
made an otherwise important tuning step unnecessary.

The basic CoMan codyn model is provided in appendix A (see model A.1).

4.2.3 Study I: CoMan gait optimization

In a first study, we are interested in replicating the results obtained on the adult sized human
model for the CoMan humanoid robot. We will address the first three of the objectives listed
in section 4.2, namely 1) application of the gait optimization method to a humanoid robot, 2)
simultaneous optimization of walking speed and 3) reducing objective complexity. Since there
are some significant differences in the physiology of the robot when compared to humans, we
expect to see this reflected in the optimized controllers and resulting gaits. By applying the
exact same methods as developed earlier, we can compare obtained results directly with our
previous study.

Optimization

We will use the exact same optimization procedure as used in the last study, i.e. particle swarm
optimization with lexicographic ordering (see section 4.1.2 for a more thorough discussion).
Due to the stable behavior of the hard contact model, we can remove the objectives introduced
to avoid unphysical behavior from the soft contact model. We have therefore removed the
optimization of the stdspeed (walking at a constant speed) as well as the non-contact-time
objective (which stated that at least one contact had to be active at all times).

As stated earlier, we do not know a-priori at what speed the CoMan enters a natural mode of
locomotion. Instead of optimizing for a specific walking speed, we instead adopt the concept of
cost of transport (Schmidt-Nielsen, 1972). The cost of transport is a non-dimensional quantity
which expresses the energy efficiency of transportation, allowing normalized comparison of
energy efficiency. It is defined by

cot= (4.2)

mgv’

137

Chapter 4. Optimization of natural human gait

where P is the power input to the system, m is the total mass, g is gravity and v is the velocity
of the system. In our case, we are only comparing the cost of transport between the same
systems, and therefore omit mg from our measurement. We thus simply use

P
cot=— 4.3)
v

Note that power is energy W over time, and velocity is distance d over time. An equivalent
cost of transport can therefore be obtained from
Wit W

t=—— = — 44
Y T a (4.4)

For human walking, this energy W is measured from metabolic cost (Anderson and Pandy,
2001). However, since we are looking at a robotics system, and we are not currently interested
in electric efficiency of the robot, we use mechanical cost of transport instead. In other words

P=Y 14 (4.5)
i

where 7; and g; are respectively the torque and angular velocity of joint i.

Since we allow optimization to find a desired walking speed, we now also need to optimize
for the walking frequency. We therefore no longer constrain walking frequency at 0.9Hz (as
described in section 4.1.2). Instead, we allow this frequency to be optimized between 0.4 Hz
and 1.2Hz. The range is intentionally large, to allow for slow (but large) steps and fast (but
short) steps.

The lexicographic objectives can then be formulated as shown in table 4.5. Note that we
have removed all the artificially introduced objectives. For the second objective, instead of
optimizing for a specific speed, we instead optimize for a certain minimum speed. This forces
the optimization to be at least moving forward before optimizing the next objective. We
emperically observed that without setting a minimum speed, the optimizations would often
converge to local optima in which no walking was achieved. We therefore set a minimum
speed of 0.3ms™!.

Table 4.5 — Lexicographic Objectives

Obijective Until

1. time time = maxtime
2. speed speed > min speed
3. -assisttime | assisttime = 0

4. -cot 00

To enforce plausible solutions with the potential to be applied on the robot, we limit the output
torque to 30 Nm. Furthermore, the maximum controlled stiffness is set to 1500Nmrad~' and

138

4.2. CoMan humanoid robot gait optimization

controlled damping is limited to a maximum of 30N msrad~".

Results

All simulations were run using the same methods as in the previous section. For each control
mode (const, step, ppoly), we ran 10 optimizations with random initial conditions.

| |
° °
/\.)
L/ L

|

Lok bk b
NN AL

|

N
N——— INo——

4 . ‘ " b 4 1 4
AN L LA L L AN
N R O
Y NA L LA L L AA
' stance (= 50%) : swing (= 50%) '

Figure 4.9 — Snapshots of one gait cycle of the best obtained solutions from optimization
for each control mode. The gait is shown from heel-strike to heel-strike. Note that gaits are
normalized to show a single step, their respective walking speeds are 0.48ms™!, 0.44ms ™!
0.33ms™!.

and

Figure 4.9 shows snapshots of the best gaits obtained for the three different control modes.
There are several important observations to make. First, all three control modes obtain quali-
tatively human like gaits. Similar to the adult size human optimization, most global human
gait characteristics, such as heel-strike, foot-roll, and toe-off are obtained. Both step and
ppoly control modes obtain gaits without knee flexion during stance phase, unlike what can
be observed in the const mode. Interestingly, all obtained gaits consistently show a stance
duration of 50%, whereas during our adult size human simulations we consistently obtained
a stance duration of 60%. This difference can be explained by the lack of a toe, which in the
human model would prolong the end of the stance phase.

With regard to walking speed, the const and step control modes both optimize for rela-
tively faster walking (0.48ms~! and 0.44ms™! respectively), as compared to the ppoly mode
(0.33ms™1). Table 4.6 shows obtained frequency, speed, step length and cost of transport for
the best solutions of each control mode. The best gait, in terms of cost of transport, is obtained
using the step controller, while the ppoly controller shows significantly worse performance.
The obtained walking speeds and corresponding frequencies are very similar between the
const and step controllers, and the natural walking speed of the CoMan (from a mechani-
cal point of view) seems to be around 0.45ms™!, or 1.6kmh™!. See B.1 in appendix B for a
rendering of the walking sequence of the optimized step controller.

Compared to data measured from children (Cavagna et al., 1983), the obtained gaits here are
much slower and produce larger steps than observed normally in children of the same size as
the robot. We attribute this difference mainly to the difference in center of mass location of

139

Chapter 4. Optimization of natural human gait

Table 4.6 — Gait speed characteristics of best obtained solutions

Type Frequency (Hz) Speed (ms™') Steplength (m) Cost of transport

const 0.64 0.48 0.74 40.5
step 0.63 0.44 0.69 27.8
ppoly 0.53 0.33 0.63 64.9

Position Stiffness Damping
40T = 60 1

20 40 .

const

0

20 =ttt

=20

60 1

40
201

step

0

=201 |

40

20

ppoly

0

LN
. \0

- :".TMJ'H:rl

=20

| |
o’o’- om OI-. .1 ! \0— 0’0’- P - !-. .1 !. \0— ’0’- om OI- * .1 QI. \o—

Figure 4.10 — Optimized joint control signals. The hip, knee and ankle signals are shown in

blue (solid), green (dashed) and red (dotted) respectively. The position plots show both the

reference signal (thin solid) and the resulting (measured) joint angle. Joint angles are shown in
degrees, stiffness in Nmrad ' kg~! and damping in Nmsrad ' kg™!.

the torso (which is much higher than it should normally be) and the torque limitations of the
platform.

Figure 4.10 shows the control signals, reference position, stiffness and damping optimized
for the three control modes. Note that the desired reference joint angles are closely followed
by the actual joint angles. The resulting control therefore seems to be largely kinematic. We
do not observe exactly the same trends as in the previous study with respect to the obtained
stiffness patterns. Previously, we noticed a trend towards increased stiffness at heel-strike,
presumably to stabilize the ground reaction forces during impact. However, due to the hard

140

4.2. CoMan humanoid robot gait optimization

contact model, we do no longer observe this trend.

Figure 4.11 shows the control output torques corresponding to the impedance control law
output from the control signals. As can be seen, most output torques stay within the CoMan
actuator limits. In particular, the output torques for the step controller look promising when
taking torque limits into account. A substantial amount of torque is required on the ankle
during mid to end stance. This is to be expected, since the ankle has to push the body forward.
However, these torques could possibly be reduced by a better designed foot, in particular the
distance from the ankle joint to the ground.

Hip torque Knee torque Ankle torque
20| a 20| B 20 | B
E
5 0 0 1 0 =
o
-20 41 —20F 4 =20r 1
20| a 20| B 20 | B
o
8 0o m 0 V\//W 0 -
w
=20 41 -20F 4 =20r 1
20 - 20 - 1 20 | 1
=
2, 0 0 0 =
o
=20 1 =20 4 =20F B

MUZEIN MU ML

Figure 4.11 — Resulting control torques for the best solutions obtained for the three control
modes. Torques are within limits in most cases, except for the hip torque in the ppoly mode
and the knee in the const mode. The step torques are within range of the limits for all joints.
Large torques are consistently required during mid to end stance for the ankle.

Discussion

The objective of this first study was to use the methodology developed in section 4.1 to optimize
a natural gait for a humanoid robotic platform. We successfully did so while 1) reducing the
complexity of the objective function such that only high level objectives remain, and 2) no
longer optimizing for a specific, known walking speed. This shows that the method is both
robust and does not depend on strictly close-to-human properties of the system. Since we

141

Chapter 4. Optimization of natural human gait

have shown in our previous study that the method is a reasonable model for human walking,
we can conclude with some certainty that the obtained results for the CoMan platform are
equally reasonable.

We have also shown that although qualitatively well performing gaits can be obtained for
the CoMan, it remains to be seen if the obtained controllers can be transferred to the robot.
It is clear that the design of the platform has not been guided by locomotion performance,
in particular when looking at the torso mass distribution and the current design of the foot.
Although it would be difficult to lower the torso mass, it would be worth investigating the
design of new feet specifically suitable for locomotion. We further believe that the presented
methodology of optimization of human like gaits could aid in this effort by validating or even
co-designing (as we will see in chapter 5) new feet in simulation.

A video of the resulting optimized walking gait for the CoMan robot can be found at

4.2.4 Study II: The effect of impedance control during perturbations

In the previous section we have seen that the developed methodology for optimizing for
humanoid gaits using impedance controllers by use of particle swarm optimization with
lexicographic ordering can be used effectively to optimize for human like gaits for the CoMan
humanoid robot platform. Although we have hypothesized that impedance control can con-
tribute to the stability and robustness of the gaits, we have not been able to find significant
evidence for it in our previous studies. In hindsight, this might not be surprising. Even though
we observe certain trends towards improved performance (in particular when using the step
controller), variable impedance cannot be exploited during steady state.

Our next hypothesis, then, is that variable impedance becomes more prominently useful
in the face of non-steady state locomotion. When looking at impulsive perturbations (i.e.
non prolonged perturbations), such as force pushes, intuitively speaking it is often better to
be compliant in the direction of the perturbation. Doing so allows for minimization of the
dynamical impact of the perturbation. Or so we expect. To test for this hypothesis, we devise a
new set of experiments which optimize variable impedance controllers for locomotion under
periodic perturbation.

Perturbations

The type of perturbations under which we will study the effect of variable impedance control
is a periodic, impulsive force perturbation on the swing leg. In our case, it is important that the
perturbation is periodic since we are still optimizing time dependent signals. We expect to see
a clear effect of impedance modulation during the period in which we apply the perturbation
forces. Furthermore, a force perturbation during the swing phase could intuitively benefit
from a variable impedance controller. We hypothesize that we will observe reduced stiffness

142

http://thesis.codyn.net/videos/coman_walking
http://thesis.codyn.net/videos/coman_walking

4.2. CoMan humanoid robot gait optimization

during the period of possible perturbation, such as to give in to the impulsive force without
disturbing the stance dynamics.

Force perturbations are applied on the foot in the horizontal direction. The magnitude of the
force and the duration of the impulse are sampled from a normal distribution. In this study we
use a force magnitude of N(80,5)N and a force duration of N(0.15,0.05)s (where N indicates a
normal distribution). The onset of the perturbation is sampled from a uniform distribution
each time a leg goes into swing phase.

Optimization

We use the same optimization methodology as used in the previous section. However, since
we are now subject to stochastic perturbation forces during locomotion, we need a procedure
by which to ensure that the performance of a particular controller is not dependent on the
specific stochastic behavior during a single run. Therefore, we run each controller N times
using a different random seed and thus obtain different perturbation forces. We then use the
worst performance as the final objective value of a solution. In all experiments, N was set to 3.

Since we have previously obtained various controllers which perform state-stead locomotion,
we will here reuse this information to bootstrap the optimization under perturbation. To do
so, we take the 3 best solutions from each previous simulation run, resulting in a total of 30
solutions with known initial conditions in the initial population of the perturbation study.
The remainder of the population is created from this initial population by applying random
mutations on all parameters in a uniform manner. We have used a mutation magnitude of
10% for all parameters for this study. The resulting population should ideally be in the vicinity
of potential solutions, or at least more so than when starting with a fully randomized initial
population.

Results

We begin by looking at the fitness progression of the runs with the best results for each of the
three control modes. In particular, we look at the amount of time spend and progression of
the last lexicographic objective (i.e. optimization of cost of transport) for each control mode,
which is shown in figure 4.12.

There are a few important observations which can already be made from looking at these
graphs. First, the step control mode spends far more time optimizing for the cost of transport,
i.e. the final objective, than the other control modes. In fact, ppoly hardly manages to reach
the final objective, failing to stabilize the gait. Table 4.7 summarizes these observations.

What is interesting to observe here is that the best obtained cost of transport follows the same
relative trend as observed in our previous study, however is approximately 5 times larger as
before. Since the locomotion speed has only changed marginally, this means that there is a

143

Chapter 4. Optimization of natural human gait

const
350 T
]
300 ° 1
o o ° °
& ° 1 I
= [[] |
s = b R L) 4
° ° LA ° a o °® ° °r L
200 fo d g ot 02 ‘4’
%
150 | | |
step

350 T

300 |- s
S 250) .
U * : . 4

200 [~ ‘ : .') v“ e))) 5 . ,‘

150 \

ppoly

350 T

300 |- s
S 250 ° o |

200 | . W . . i

150 - | | | | | | ! |

0 50 100 150 200 250 300 350 400
Iterations

Figure 4.12 - Fitness progression while optimizing for the last lexicographic objective, cost
of transport, for the run with the best obtained fitness for each control mode. From top to
bottom, the progression of respectively const, step and ppoly is shown.

Table 4.7 - Optimization summary

Type Bestcot Bestspeed (ms™') Average % final objective

const 165 0.37 14%
step 154 0.38 58%
ppoly 192 0.3 9%

significant increase in power consumed due to the applied perturbations.

When looking at the reason why the const and ppoly optimizations spend a significantly

144

4.3. Conclusion

smaller amount of time optimizing for cost of transport we see that those control modes are
not able to consistently handle the perturbations. Even though each solution is evaluated
3 times, keeping its worst performance as the final fitness, when we rerun those solutions
with different perturbations we do not obtain again the same performance. In fact, most of
the time, those solutions fall back to the assist time objective, unable to self-stabilize. This is
not the case for the step control mode which shows much more reliable performance under
perturbation. Due to the stochasticity of the perturbations, solutions which were performing
well before, might not do so in the future. However, standard Particle Swarm Optimization
does not incorporate this into the optimization and thus might be attracted to solutions which
are in fact performing less than previously observed.

Although this is a problem which could be addressed, it is not the primary objective of this
study. The problem occurs for all control modes, and we thus are not biased by it towards
a particular mode. The main objective of this study is to determine whether the advantage
of joint level variable impedance control emerges while under perturbation without explicit
optimization for it. We therefore turn to look at the optimized control patterns for the const
and step control mode.

Figure 4.12 shows the control signals for the best solutions of the const (left) and step (right)
control modes. The most interesting observation here can be made when looking at the
stiffness and damping patterns of the step mode. Unlike in our previous studies, here the
stiffness and damping patterns show a marked correspondence with the perturbation signal.
The change between the two values of stiffness and damping shows a clear correlation with
the window of possible perturbations.

In particular, we see that the stiffness of the knee increases (slightly) during the period of
possible perturbation, while the stiffness of the hip shows a large decrease at the end of
perturbation. The opposite is observed for the damping , which increases for the knee during
late swing, while it decreases for the hip during early swing.

The obtained correspondence between the perturbation and the change of impedance is clear,
and this particular solution has optimized in particular a decrease in hip stiffness and damping
during period of the swing phase where perturbations can occur. Figure B.2 in appendix B
shows a single step from the walking sequence of the step controller as shown in figure 4.13.

Avideo of the walking gait under perturbation can be found at

4.3 Conclusion

In this chapter we have explored the optimization of natural human gait from high-level objec-
tives, such as walking at a certain speed while minimizing for a measure of energy expenditure.
We showed that using Particle Swarm Optimization (see section 3.1.3) and lexicographic or-

145

http://thesis.codyn.net/videos/coman_perturbation
http://thesis.codyn.net/videos/coman_perturbation

Chapter 4. Optimization of natural human gait

Position

40 F = | S P S

- " 1 ‘:

=
[d

"
o

Stiffness
[\
(]
T
|
T
|

0, I |
» I - N _ ; ; ;
k= ; 5
o 0.5 i 1 i = |]] —
g E : E : ? E ‘
-\ \ J -
= L A
0:I:IIIIIIIIII’IIIIIIIIIIEIIIIIIIIIIIIEIIIII: r EQIIIIIIIII:IIIII‘ I:IIIII:
100

o e

60*% : :] : o
10| -
2071 [3 [771 i 3 [|
o z : z : z : z

Figure 4.13 — Optimized joint control signals of the best solutions for the const and step control
modes during the last two periods of locomotion. The hip, knee and ankle signals are shown
in blue (solid), green (dashed) and red (dotted) respectively. The position plots show both the
reference signal (thin solid) and the resulting (measured) joint angle. Joint angles are shown
in degrees, stiffness in Nmrad~'kg™! and damping in Nmsrad~' kg™!. The magnitude of the
perturbation force during walking, as applied to the ankle, is shown in the bottom plot. The
shaded areas indicate the swing phase.

|Perturbation|

dering (see section 3.3.2) of optimization objectives, a natural, stable gait corresponding to
an adult sized human model can be obtained. We hypothesized that variable impedance
control could improve performance of the obtained gaits, but only found small trends towards
improved performance using a simple step variable stiffness and damping controller.

Having verified that our proposed optimization method works well to (re)discover natural
human gait for an adult sized human model, we applied the exact same optimization method-
ology (albeit with different objectives) to a humanoid robotic platform, the CoMan in section

146

4.3. Conclusion

4.2. Although this platform resembles a child size human, several of its morphological proper-
ties differ from that of a human person. In particular, the feet and the center of mass of the
robot are significantly different. We show that by changing the dimensions of the feet, we can
again obtain natural gait while additionally optimizing for the cost of transport instead of
torque requirements. This allows the optimization to find the optimal speed to power ratio for
this particular model.

Finally, in our last study in section 4.2.4 we investigate further the possible role of variable
impedance control by introducing perturbations on the swing leg during locomotion. By
making the perturbations periodic, we can still optimize for an open-loop variable impedance
controller allowing for direct comparison with our previous studies. We show that indeed under
perturbation, the role of variable impedance becomes significant, leading to more reliable
perturbation rejection by reducing stiffness and damping of the hip during the expected
period of possible perturbation. It should be noted that we do not assume to reliably obtain
conclusive results on the type of impedance modulation necessary for perturbation rejection.
Rather we observe and conclude that allowing optimization of modulation of impedance
allows for improved robustness against rejection of perturbation.

Although using an open-loop controller allowed us to systematically explore the role of vari-
able impedance, it is clear that an actual controller should modulate impedance based on
feedback of an observed perturbation. There is little gain to be had from variable impedance
during steady state locomotion, but our last experiments showed that modulation of stiffness
and damping could provide for a simple mechanism to reject (although marginally) certain
perturbations and that our optimization method is able to exploit the impedance modulation
properly. Future work would include studying feedback controllers to modulate impedance
based on sensor information, which could further increase locomotion robustness.

Finally, we only show results here obtained in simulation. It remains to be seen if these same
results can be obtained on the real platform. There are of course additional difficulties for
transferring our controller. First, all our simulations are done in 2D, while the robot requires a
controller for the third dimension. Second, we obtain marginally stable gaits in simulation
since we do not explicitly control the global stability of the robot. Even though the perturbation
study shows that the controller is able to self-stabilize under certain perturbations, we do not
expect this to be sufficient when applying the same controller on the real robot. One possible
direction would be to use our controller as a nominal pattern generator while providing an
additional stabilization controller which modulates this pattern such that the complete control
becomes globally stable.

147

Co-design of human assistive devices

Having developed all of the necessary methods for the modeling of dynamics, optimization of
continuous parameters within discrete sets of solution classes, and having investigated the
role of impedance control for (re)discovering nominal human gait, we now turn to the last
topic of this thesis. Although there are many different areas to which robotics research can
contribute, few are of arguably greater potential impact on society than those concerned with
the development of wearable robotics such as prosthetics and orthotics research. This is not
necessarily a new field of robotics research, since many successful prostheses and orthoses
exist today, both for the lower and upper extremities. Most of these are however either purely
passive, or have only limited powered capabilities. There has been a recent increase in the
research and development of active or powered wearable devices, now that technology has
enabled more compact actuators and higher power density energy supplies.

We are particularly interested in the development of powered, wearable robotics for the
assistance of the lower extremities. Lower extremity wearable robots can be divided into two
main categories, those meant for 1) the augmentation of an able-bodied person and 2) for the
assistance of a person suffering from an impairment of the lower limbs (for example hemi- or
paraplegics). Several wearable robots have been developed in both categories in recent years.

In the first category, probably the most well known examples include the BLEEX (Berkeley
Exoskeleton) (Kazerooni and Steger, 2006) (figure 5.1a) and the Sarcos (figure 5.1b), both of
which were a result of a DARPA sponsored program, Exoskeletons for Human Performance
Augmentation. Both of these exoskeletons are capable of above human performances in terms
ofload bearing and weight carrying. Although one of the primary motives for the development
of these type of exoskeletons is in the military, they could also be used for industrial purposes,
or disaster scenarios. A different approach was taken by the MIT exoskeleton (Walsh et al., 2006,
2007) (figure 5.1c), which focused on a semi-passive design in which passive dynamics were
exploited in an effort to create a much easier to wear and more energy efficient exoskeleton.
Finally, the HAL-5 exoskeleton (Guizzo and Goldstein, 2005) (figure 5.1d) is another exoskele-
ton which takes a different direction yet, in which control is derived from measurement of
EMG of the operator. Although initially shown in demonstrations for load carrying, it has been

149

Chapter 5. Co-design of human assistive devices

(a) BLEEX (b) Sarcos (c) MIT (d) HAL

Figure 5.1 — Existing exoskeletons for human augmentation. From left to right a) the BLEEX
exoskeleton (source http://bleex.me.berkeley.edu/), b) the Sarcos exoskeleton (source http:
//robohub.org), c) the MIT exoskeleton (source Walsh et al. (2007)) and d) the HAL exoskeleton
(source http://www.cyberdyne.jp/)

designed specifically for the assistance of impaired and elderly persons during daily tasks. It
is also one of the first exoskeletons to be successfully commercialized and has recently been
used in a number of hospital settings.

(a) Ekso (b) ReWalk (c) Rex

Figure 5.2 — Lower extremities orthosis used for rehabilitation and support of paraplegics.
From left to right a) the Ekso by Ekso Bionics (source http://www.eksobionics.com), b) the
ReWalk from Argo Medical Technologies (source http://rewalk.us, courtesy of Argo Medical
Technologies) and c) the Rex from Rex Bionics (source http://www.rexbionics.com)

This brings us to the second class of wearable robots, those used for rehabilitation or assistive

150

http://bleex.me.berkeley.edu/
http://robohub.org
http://robohub.org
http://www.cyberdyne.jp/
http://www.eksobionics.com
http://rewalk.us
http://www.rexbionics.com

purposes. The aim of these is not to elevate human performance, but rather provide assistance
or support to those who are impaired or in need of rehabilitation. This is arguably of greater
sociological importance than the creation of “superhumans”, and there are approximately 5
million people in the United States alone who could benefit from a lower extremities orthosis.
There are a few recent success stories in the development of exoskeletons for the assistance
of paraplegics allowing standing and even walking. The Ekso (formerly called eLegs) is being
developed by Ekso Bionics (previously Berkeley Bionics), and provides paraplegics with the
ability to walk again (figure 5.2a). Crutches have to be used for stabilization since the device
does not provide self-stabilization at the moment. The ReWalk (figure 5.2b), from Argo Medical
Technologies, employs very much the same design as the Ekso, as both use electrical actuators
(instead of hydraulic, which most human performance augmenting exoskeletons use). Similar
to the Ekso, paraplegics can use the ReWalk to walk with crutches for stabilization. Wearable
robots which self-stabilize, i.e. do away with the need for crutches, are also being developed.
The Rex (figure 5.2¢), developed by Rex Bionics, is a slightly bulkier wearable robot, but
provides full independent movements for users who were previously restricted to using a
wheelchair.

All of the above mentioned exoskeletons, whether used for carrying large loads, rehabilitation
or assistance all have one thing in common. Their design is anthropomorphic, i.e. they follow
human morphology exactly. There are many advantages to such a design. First, it is a relatively
simple design from a kinematic perspective since segment lengths and joint locations are
known beforehand. Secondly, the acceptance of an exoskeleton which follows the human
limbs is arguably much higher than for a possibly non-anthropomorphic one, i.e. people feel
socially more comfortable wearing a device that does not significantly alter their appearance.
On the other hand, some devices, such as the Flex Foot Cheetah (Nolan, 2008) have received
much attention and although not anthropomorphic, are generally viewed positively. However,
here we focus on social acceptance in the nominal case, where generally people prefer to be
“normal”. Of course, what is socially acceptable is a contemporary notion and changes over
time.

On the other hand, a non-anthropomorphic design for a wearable robot could have significant
advantages on its own. Such devices have more kinematic freedom and have the potential of
providing improved dynamic behavior with regard to interaction with the user. This additional
level of design freedom can improve user comfort (Schiele and van der Helm, 2006) by avoiding
issues such as joint misalignments causing uncomfortable interaction forces between the
wearable device and the person. Of course, they are also inherently more complex in their de-
sign, requiring more joints, connecting segments and overall mechanics. Additionally, special
care has to be taken to avoid singularities which are bound to occur in non-anthropomorphic
parallel structures.

Since the design of such devices can be difficult and non-intuitive, we aim in this work to pro-
vide a methodology for the iterative design of non-anthropomorphic, lower extremities wear-
able robots through the use of evolutionary inspired optimization algorithms, co-designing

151

Chapter 5. Co-design of human assistive devices

both the wearable robot structure as well as its control. There are many important aspects
to the design of a wearable device, aimed to be used for rehabilitation or assistive purposes.
Although we are fully aware of the importance of device interaction interfaces with the user,
device aesthetics for general acceptance and user adaptive control, we limit ourselves in this
study to the development of a methodology for the design of the mechanical structure and
non-interactive control only. See Ronsse et al. (2010, 2011a,b,c) where we explore adaptive
control for wearable robot assistance using central pattern generators.

In the following sections we first describe our initial studies towards developing our method-
ology. Then we continue to detail the experimental design method, modeling of the non-
anthropomorphic wearable robot, specifics of the optimization procedure and finally the
obtained results from this study.

The work presented here has been carried out as part of the EVRYON European project from
the European Community’s Seventh Framework Programme FP7/2007-2013 - Future Emerging
Technologies, Embodied Intelligence, under the grant agreement no. 231451 (EVRYON).

5.1 Initial study

In the seminal work of Karl Sims (Sims, 1994b,a), creatures were evolved to perform certain
tasks in a competitive environment. The novelty was that not only were the creatures’ con-
trollers evolved, but their morphologies were as well. It showed that on a variety of different
tasks, such as walking, swimming and jumping, strategies would emerge, both in morpholog-
ical terms and control, which would be hard to design manually. Similarly, in Hornby et al.
(2001) stick like robotic lifeforms were evolved using Lindenmayer systems (Lindenmayer,
1968) in which repetitive structures can be encoded with a small number of parameters.

It has been shown that co-design of morphology and control can be beneficial in terms of
optimizing for the efficiency of a system. In Paul and Bongard (2001) it was shown that when
optimizing for the morphology of a simple bipedal walker, increases in performance could be
observed with respect to the original bipedal morphology. Here we hope to apply these same
principles to the design of a wearable robot.

When we first started to explore the feasibility of this approach we simply tried optimiz-
ing for the morphology and control of bipedal like “creatures”, only concerned about for-
ward locomotion. The results can be seen in the movie provided at
. We then did the same thing, only this time for evolving
quadrupedal creatures, for which the results can be found at
. Of course, these were simple “toy” like example optimizations, but there are
some important observations to be made:

1. As the first movie shows, allowing the optimization of morphology can lead to surprising
and unintuitive solutions for the task of locomoting forward.

152

http://thesis.codyn.net/videos/codesign/crazybipeds.mov
http://thesis.codyn.net/videos/codesign/crazybipeds.mov
http://thesis.codyn.net/videos/quadruped.avi
http://thesis.codyn.net/videos/quadruped.avi

5.1. Initial study

2. Many different solutions exist which, while performing the same in terms of locomotion
speed, achieve this in very different ways.

3. If the only goal is to locomote forward, many solutions emerge which could never be
realized due to joint limits, fast motion, inter collisions, etc. Therefore, care has to be
taken to optimize for the appropriate objectives to obtain a desired result, and with the
right constraints.

4. Ttis possible to retrieve, without prior specification of a specific gait, a natural locomo-
tion gait as in the case of the quadruped in the second movie. Here we did not specify
beforehand the phase between the limbs, however a natural gallop appears in which the
morphology has evolved such as to form a primitive foot support structure.

This initial study verified that it is possible to obtain surprising and novel methods of locomo-
tion while at the same time not preventing the occurrence of natural locomotion, if it turns
out to be the most efficient solution (according to the objectives optimized for).

After this initial experiment, we continued with developing the co-design of a wearable robot
structure for human assistance. In that study (of which the details are not presented here)
we used Webots (Michel, 2004) (an ODE based simulator) to simulate human models with
augmented parallel structures for the task of locomotion. Analyzing the results from these
simulations, we observed that although structures were able to locomote properly, various
issues prevented the use of these structures as the basis for a prototype of a wearable robot.
In particular, optimizations almost always made use of mechanically singular configurations
in order to obtain efficient locomotion, which was highly undesirable for the real device.
Additionally, we also observed that optimizations could lead to the occurrence of large internal
forces on the human model joints. Unfortunately, ODE does not allow for reliable determina-
tion of these internal forces. This made it difficult to incorporate minimization of these forces
as an objective during optimization, since a physically representative threshold could not be
set correctly.

The results of these simulations can be found at .
These models immediately show the difficulties of using these type of optimizations for the
co-design of a wearable robot. Most of the solutions would either be hard to realize realistically,
would involve fast moving parallel (sub)structures or would not be acceptable to wear in a
social environment. This also shows that, as suggested in Paul and Bongard (2001), this type of
design methodology is better used as an iterative design input, rather than a final solution. Of
these early simulations is of
interest since it features a structure which is close to the body but nevertheless is of an intricate
parallel design which leads to reasonably efficient transfer of energy from the wearable robot
joints to the human body. Nevertheless, it also made use of singularities in the kinematic
structure which is why it was finally discarded along with the other solutions.

These results set us on a new path. Intrigued by the possibilities of a non-anthropomorphic
design, we set out to develop a robust, reliable and open simulation environment in which we

153

http://thesis.codyn.net/videos/codesign/first
http://thesis.codyn.net/videos/codesign/first/exo823_fast.avi

Chapter 5. Co-design of human assistive devices

could iteratively design these type of structures without the restrictions imposed by existing
simulation software. This finally lead to the development of codyn which provides all of
the necessary tools for modeling and simulating closed loop parallel structures, measuring
of constraint forces and accurate contact models. In the remainder of this chapter we will
describe the co-design of a non-anthropomorphic wearable robot for the lower extremities
using our previously developed tools.

5.2 Design

The co-design of both the morphology and the control of a wearable, lower limb robot for the
task of steady state locomotion is a complex optimization problem, especially when taking
an open-ended approach as proposed here. The approach that we adopt is to develop a
methodology for the co-design of wearable devices providing an open-ended and iterative
method to automatically explore possible designs and complex structures. However, the result
of this co-design is not a finalized product, but rather provides insights into the possibilities
of new designs that would have otherwise been difficult to achieve. To keep the problem
tractable, we simplify the process by imposing a number of constraints and some assumptions.
We believe that these assumptions do not diminish the validity of the approach, although
it does indicate that there are certain limitations to the scale at which our method can be
applied. We will discuss this in more depth in section 5.6. More specifically, we introduce the
following constraints and assumptions:

1. Sagittal: As with our previous studies, we will only consider the sagittal plane, i.e. we
focus on walking in the 2D plane. Additionally, we ignore for the moment inter collisions
between segments of the human body and the wearable robot under the assumption
that there are ways to offset parallel segments in the y-direction.

2. Joints: We only consider a wearable robot for actuating the hip and knee, leaving the
ankle unactuated by the wearable robot. Although the ankleis important during walking,
we assume that it could be actuated anthropomorphically, and the design is not part of
this study.

3. Structure: Wearable robot joints are connected through simple, rigid bars and the num-
ber of degrees of freedom, per leg, is exactly 2. We consider the construction of the
wearable robot from 3 joints and 4 segments. Note that more complex structures (i.e.
with more joints and more segments) could also be considered without loss of generality.
Here we follow constraints imposed by EVRYON.

4. Actuators: We assume perfect torque actuators and ignore possible effects from the
motor dynamics. Since there are two DOFs, we will have two actuators per leg.

5. Attachment: The wearable robot is attached to the human body in a perfectly rigid
manner. The interaction interface between the human body and a device is important,
both ergonomically and because it is responsible for transferring forces for a real device.
Here however we choose not to focus on this aspect of the design.

154

5.2. Design

As can be seen from this list, there are a fair number of important aspects of wearable robot
design that we do not choose to address. We have a strong focus on the exploration of robot
morphologies and the design methodology, while focusing less on the practical implications
of building such a system.

To continue, we will first look at the family of wearable robots that are the result of our design
choices listed above, in the form of their topology and morphology.

5.2.1 Topologies and morphologies

Since we are looking at the design of a non-anthropomorphic wearable robot, we start by
defining attachment points on the human body to which the parallel structure of the robot
can be attached. Since we are aiming to actuate the human hip and knee joints, we define
three attachment locations as shown in figure 5.3: One on the torso, one on the upper leg, and
one on the lower leg.

Figure 5.3 — Schematic representation of the attachment joints at which the wearable robot
can be attached to the human body.

We can look at the definition of the structure of the wearable robot in terms of its fopology and
its morphology. The topology of a structure determines the number of degrees of freedom and
the manner in which they are connected. It therefore uniquely identifies the connectivity of
all the joints and segments in the system and can be represented by a graph. The concrete
realization of a certain topology into a structure results in a morphology. This realization
involves choosing the geometrical properties of the joints and segments, such as the length
of each segment and the placement of actuated joints. Figure 5.4 illustrates this principle

155

Chapter 5. Co-design of human assistive devices

schematically.

AN A

C 2\
v 2
A

Figure 5.4 — Schematic representation the realization of a specific morphology (right) from
a kinematic ropology (left). On the right, the fopology is represented as a graph where edges
represent joints and vertices represent segments. One possible realization of the topology is
shown on the right. Joints in orange are the loop closure joints.

In Sergi et al. (2011), a method is developed for the exhaustive enumeration of wearable robot
topologies for a given number of wearable robot segments, joints and a desired number of
degrees of freedom. Topologies can be represented by an adjacency matrix which encodes the
connectivity of the segments in the structure. Considering the fixed kinematic structure of the
human (i.e. the connectivity of torso, hip, knee and ankle), the wearable robot attachments
and the number of additional wearable robot segments and joints, all possible adjacency
matrices can be enumerated, resulting in a desired mobility. The mobility of a system with
parallel structures is defined as the resultant number of DOFs in the system, and is defined for
planar structures by (Kutzbach, 1929):

k=3(1-1)-2n, (5.1)
where [is the number of segments and 7 is the number of joints in the structure.
In our case, it is useful to separate the mobility into human, attachment and wearable robot:

k=3(-1)-2n (5.2)

=3Up+ Ly —1) —2(np+ ng+ nw), (5.3)
where [;, is the number of human segments (i.e. 3), l,; is the number of wearable robot

156

5.2. Design

segments, ny, is the number of human joints (i.e. 2), n, the number of attachment joints (i.e.
3) and finally n, the number of wearable robot joints. Considering a mobility of k = 2, we can
then express this equation in terms of Iy, and 7y,:

6 = 3lyr — 21wy (5.4)

Given this equation, the minimally interesting set of topologies where k = 2 is given when
lwr = 4 and ny,; = 3, which is the set that we will consider here. The method as described in
Sergi et al. (2011) first generates all of the possible combinations of connectivity adjacency
matrices. Then, it prunes this set by removing solutions which are over-constrained, contain
disconnected graphs or impair independent movement of the hip and knee joints. Finally,
10 different topologies each having the desired properties can be derived. Figure 5.5 shows a
choice of morphological representations for each of these topologies.

Even though we restrict ourselves in this study to these ten topologies, there are still many
different morphologies which can be realized. The lengths of the wearable robot segments as
well as the exact placement of the attachment locations determines the final structure of the
wearable robot and can significantly alter the behavior of the structure.

5.2.2 Actuator placement

Apart from the choice of segment lengths and attachment placement for the wearable robot,
there is another morphological choice that needs to be made. From figure 5.5 it can be seen
that there are now 6 joints (3 attachments and 3 wearable robot) where potential actuators can
be placed. Since we only have two degrees of freedom in this system, we should only need to
actuate two of these 6 joints. We can however not actuate just any two of these 6, since not all
combinations of two joints result in full control of the system. This is obvious when looking at
the first topology, where we will need at least one actuator on the top chain (for the hip), and
one on the bottom (for the knee). However, this is much less intuitive for the other topologies.

The possible actuator combinations for a given topology can be determined systematically, in
particular since we only have a small number of joints. First, iterate all possible combinations
of two actuator placements, i.e.:

{i,),iell,nl,jeli+1,nl}, (5.5)

where n = 6 in our case. Then, for each actuator pair (i, j) we perform a degeneracy test on
the topology such that if we collapse the two segments which a joint connects onto a single
segment, we lose exactly one degree of freedom in the system. If this is the case for both i and
j, then it follows that the pair (i, j) fully determines all of the degrees of freedom the system.

Figure 5.6 illustrates this procedure schematically for the verifying of the actuator pairs (1,4)
and (1, 6) for topology 2. For both, first joint 1 is collapsed, resulting in k = 1, i.e. the loss of

157

Chapter 5. Co-design of human assistive devices

1 2 3 4 5
0 0 0 o o
/] : Ly I ox
0.8 /% . . ° ®
) e o—9° o 9\) o
(5]
@< /. >. \ \'./@ 6\ >. >.
6
(3] I@ (3] I@

-
y
e
-
>

6 7 8 9 10
; ; ; ; ;
l ® / l 6/1 / l
3 N) T
Do (S AT
> L \ (6}
N N ed N
[) [) [)

AN AN AN AN AN
Figure 5.5 — Morphological representations of enumerated topologies having 3 wearable robot
joints and 4 wearable robot segments. Only a single realization for each topology is shown,
and it should be noted that different realizations of the same topology can lead to wearable
robots with significantly different properties. Joints in green (1, 4, 5 and 6 in the top row, and 3,
4,5 and 6 in the bottom row) are the added attachment and wearable robot joints, while the
orange joints (2 and 3 in the top row, 1 and 2 in the bottom row) are the added loop closure
joints.

one degree. Next, for the first pair joint 4 is collapsed, however the degrees of freedom in the
system is still k = 1. The pair (1,4) is therefore not a valid actuator pair. On the other hand,
when collapsing joint 6 after joint 1 the result degrees of freedom are k = 0, and (1, 6) thus fully
determines the system. Note that the maximum number of combinations of choosing joint
pairs of size k from a total of n joints is given by:

n!

N= o o

(with (i, j) = (j, i) and j # i), which means that in our case with k = 2 and n = 6, the maximum
possible actuator pairs is N = 15. Table 5.1 lists the resulting actuator pairs for each topology.

In terms of structural parameter spaces, as defined when using MMPSO (see section 3.2), we

158

5.2. Design

k=1
(T
6
> hip
N
k=2 k=1 \knee
|
A (— "\
6 6
1 hip hip
(\ } 4 \ }
/\knee | /\knee\, k=0
2 2

2/\knee\/

4

Figure 5.6 — Schematic illustration of the determination of valid actuator pairs in given a
topology. In this case, the pairs (1,4) and (1, 6) are checked for topology 2. We start on the left
with the full topology and then collapse joint 1 to obtain the second topology and check for
the mobility of the topology using equation 5.1. If the mobility has reduced by a single degree
when collapsing a joint, then that joint can be a valid actuator. Next we check for the second
actuator in each pair. When collapsing joint 4 (top right), we obtain k = 1 and thus DOFs are
not reduced and the pair is invalid. On the other hand, collapsing joint 6 (bottom right) results
in k =0 and thus (1, 6) is a valid actuator pair.

now have 10 parameter spaces for the morphological parameters needed to realize the 10
topologies (i.e. wearable robot segments and attachment offsets). In addition, within each
of these 10 spaces, we have a further N parameter spaces for each of the actuator pairs. We
therefore have a total of 126 parameter configuration spaces to explore using MMPSO. Section
5.4.1 provides more details on using MMPSO for this particular optimization.

5.2.3 Singularities

Although the general, or maximum mobility of a closed loop kinematic chain can be deter-
mined using equation 5.1, the actual mobility of a parallel system is usually variable. The
cause of this variability is the occurrence of kinematic singularities, in which case the mobility
of the structure is temporarily reduced. When considering parallel structures such as shown

159

Chapter 5. Co-design of human assistive devices

Table 5.1 — Actuator pairs for each topology

Topology N Actuator pairs

1 9 (1,5),(1,3),(1,6), (2,5, (2,3), (2,6), (5,4), (3,4), (4,6)

2 12 (1,5),(1,3),(1,6), (5,2), (5,3), (5,4), (5,6), (2,3), (2,6),
(3,4), (3,6), (4,6)

3 12 (1,2, (1,3),1,5), 1,4, 1,6), 2,3), (2,4), (3,5), 3,4),
(3,6), (5,4), (4,6)

4 12 (1,3),(1,5),(1,6), 2,3), (2,5), (2,6), (3,4), (3,5), (3,6),
(4,5), (4,6), (5,6)

5 15 (1,2),(1,3),(1,6),(1,4),(1,5), (2,3), (2,6), (2,4), (2,5),
3,6), 3,4), (3,5), (6,4), (6,5), (4,5)

6 12 (1,2),(1,3),(1,9),(1,6), (1,4), (2,5), (2,4), (3,5), (3,4),
(5,6), (5,4), (6,4)

7 15 (1,2),(1,3),(1,6), (1,5), (1,4), (2,3), (2,6), (2,5), (2,4),
3,6), 3,5), (3,4), (6,5), (6,4), (5,4)

8 12 (1,3),(1,5),(1,6), (2,3), (2,5), (2,6), (3,4), (3,5), (3,6),
4,5), (4,6), (5,6)

9 12 (1,2),(1,3),(1,5),(1,6), (1,4), (2,5), (2,4), (3,5), (3,4),
(5,6), (5,4), (6,4)

10 15 (1,2),(1,3),(1,4), (1,5), (1,6), (2,3), (2,4), (2,5), (2,6),

3,4), 3,9), (3,6), (4,5), (4,6), (5,6)

in figure 5.5, kinematic singularities can easily occur. Figure 5.7 shows a simple case of such a
singularity where in a particular configuration, a joint which could previously actuate the sys-
tem can now no longer do so. The case shown in figure 5.7 is intuitive, but as with determining
pairs of actuators, it is not necessarily so in the general case.

It is possible to exploit these singular configurations during locomotion since joints can
effectively be locked. This can be beneficial during the stance phase since no torques are
required to keep the leg straight. In earlier work, we would allow singular configurations to
occur and we would indeed observe that most optimizations resulted in the use of singularities
during the stance phase.

The problem is though that once in a singular configuration, we cannot move out of it by
controlling the joint anymore. This problem does not occur during simulation as such because
we optimize for steady state locomotion and we do not explicitly require the system to be
controllable everywhere as long as it moves forward. Therefore, as long as the structure is no
longer singular when we need to actually control it (e.g. end of stance), gaits are unaffected.
Of course, on a real device the type of singularities that would occur with our wearable robot
are highly undesirable. Unless additional mechanisms are present to discontinue the singular
configuration at any time, the system becomes uncontrollable during certain phases of the
gait and it is no longer possible to obtain anything other than the precise gait we optimized
for.

160

5.2. Design

(5]
6/0
\@

Figure 5.7 — Occurrence of a simple kinematic singularity. It is intuitive in this case that applying
a torque on joint 6 would result in only linear forces acting on the knee joint, and not in any
torque. Therefore, no amount of torque applied to joint 6 will result in any movement of the
knee, hence the singularity. Note that a singularity is not a property of the kinematic chain
only, it depends on where torque is being applied in the chain. In this case, the knee joint itself
(for example) can still be actuated without problems.

Until now, we have only mentioned singularities in the context of the wearable robot. However,
singularities can also occur on the human joints, i.e. leaving the person locked in the wearable
robot structure. Again, this is undesirable since not only does this lead to possible discomfort
for the person, but he or she should always be capable of control.

In our simulations we therefore explicitly validate morphologies in terms of possible singu-
larities before simulating them. Since we are interested in steady state locomotion, we look
at singularities occurring during nominal walking gait trajectories. Furthermore, we verify
that neither the actuated joints on the wearable robot, nor the human hip and knee joints
become singular during any phase of the gait. Determining the singularity of a configuration
is detailed in section 5.4.4.

5.2.4 Summary

In summary, the goal of this work is the co-design of a wearable robot designed for lower
limb locomotion of an average, adult size human person. We focus specifically on steady
state locomotion in the sagittal plane by attaching a parallel structure to the hip and knee of
a human model, while leaving the ankle actuated directly. The morphological space of the
wearable robot consists of the realization of 10 different topologies featuring two degrees
of freedom per leg, composed of 4 additional segments and 6 additional joints. These two
degrees of freedom are both actuated using wearable robot joints and the choice of actuator
pair is open for optimization, while the remaining wearable robot joints are modeled as spring
dampers (of which spring stiffness and damping are also optimized). Finally, we explicitly
verify that a wearable robot does not contain kinematic singularities during nominal gait

161

Chapter 5. Co-design of human assistive devices

before simulating it, for both the actuated wearable robot joints as well as the human hip and
knee joints.

5.3 Modeling

There are three main difficulties when it comes to the modeling of wearable robot structures
for locomotion as we would like to do here. The first is the modeling of closed loop dynamics,
for which the resulting equations of motion are significantly harder to derive than for the
general open loop system. Moreover, we also need a convenient representation of the model
in which we can easily parametrize not only the control, but the morphology as well, without
loss of performance. The second issue is that of simulating contacts with the environment.
Although this is a general issue when modeling for locomotion simulations, it is even more
so when considering hard contacts with closed loop dynamics. Finally, since we would like
these simulations to provide input to the design process of an actual wearable robot, we need
simulations to be accurate (rather than very fast) and have access to quantities such as joint
constraint forces and model Jacobians (used to check for singularities).

Although it is certainly possible to perform the type of simulations that we require using
various simulator tools, codyn (see chapter 2) is particularly well suited for the task. Not only
does it provide a hard contact model which solves for the dynamics regardless of closed loops
present in the system, it also allows for both easy parametrization of the morphology and high
performance simulations. We therefore use codyn for all of the simulations in this chapter. We
briefly describe in the next section the modeling of the human augmented with the wearable
robot and continue after that with the method used to verify the singularity of the system.

5.3.1 Augmented human model

The modeling of the human is done in exactly the same way as shown in the previous chapter
(section 4.1.1), except that we no longer use the soft contact model. The dimensions and
inertial properties are kept the same, i.e. resembling an adult sized human of approximately
70kg and a height of 1.80m.

Since we limit ourselves to 10 topologies, we can construct the closed loop rigid body dynamics
for each of these topologies separately. By choosing the proper parametrization, we can then
still use codyn to generate high performance code to forward simulate the system. Recall from
chapter 2 that codyn does not allow dynamic alteration of the structure of the dynamics. It is
therefore less suited if we would like to also optimize for open topologies (e.g. using genetic
programming), since we would need to reconstruct the dynamics for each simulation. Here
instead, we can parametrize each morphology (corresponding to one of the 10 topologies)
such that we can still change mass, center of mass, inertia, segment length and attachment
positioning while avoiding the need to regenerate the model for each simulation.

162

5.3. Modeling

Having defined the human model, we then proceed to first place the three attachment joints
on the torso, upper leg and lower leg of the human. Then we continue to introduce the four
additional wearable robot joints and connect them according to the respective topology.

5.3.2 Closing joint actuation

In section 2.6.9 of chapter 2 the procedure for deriving the closed loop equations of motion
was shown. This derivation only considered the kinematic constraint imposed by the loop
closure joint, and omitted how to model the application of active joint torques on the loop
closure joint. However, since we are able to place actuators on loop closure joints, we require
additional dynamics integrating active loop closure forces.

The easiest way to introduce these forces, from Featherstone (2008), is to model the loop
closure joint forces as external forces projected to the bodies connected by the joint. Instead
of calculating T, explicitly, we can instead calculate C — 7, directly by modifying the Recursive
Newton Euler algorithm as shown in section 2.6.6. This is automatically done in cédyn as soon
as there are loop closure joints.

5.3.3 Constraint forces in closed loop systems

Since we derive equations of motion in generalized coordinates, we no longer have access to
the constraint forces from the equations of motion. This is not important when concerned
only with motion, but becomes important when using simulations for design. In particular,
we are interested here in being able to measure constraint forces (i.e. internal forces) on the
human joints and segments.

Using the Recursive Newton Euler algorithm, constraint forces can actually be obtained from
a by-product of the derivation of C, and thus requires no further calculations (see equation
2.53). This however is no longer sufficient when considering closed loop systems. Recall that
loop closures are resolved in the equations of motion by introducing acceleration constraints:

Kg=k (5.7
and generalized constraint forces:
t.=K'A, (5.8)

where A are the loop closure constraint forces as observed from the child frame of the loop
closure joint. Note further that although A is solved for, it is merely projected directly to
generalized forces T, and thus information about constraint forces is again lost. To resolve this,
we can project A through the constraint force subspace of the loop closure joint to obtain the
spatial constraint force at the joint and propagate it through the system as an external force.
We only do so to compute the resulting constraint forces, i.e. compute them separately from

163

Chapter 5. Co-design of human assistive devices

the equations of motion. Incidentally, since the hard contact model in codyn is implemented
using loop closure constraints, this method also works without changes for obtaining joint
constraint forces when using hard contact models.

5.3.4 Control

For the control of the wearable robot joints we use the same impedance controller developed
in the previous chapter. There we observed that the step control mode, i.e. where stiffness and
damping are varied by a step function, generally outperforms a constant stiffness/damping
impedance controller, as well as a more complex stiffness/damping controller (the ppoly con-
troller). It therefore seems that it provides a good trade-off between parameter complexity and
variable impedance control during optimization. Furthermore, using impedance control we
obtained natural gait from high-level objectives only. We will therefore use the step controller
in this work to control the wearable robot:

7i(0) = Ki (£)(qy,(£) — q(1)) — D; () (1) (5.9)
K!, K, <t<K

Km=4 1 " & (5.10)
Kl.2 otherwise
D!, D, <t<D

Di(t)={ ! . & (5.11)
D? otherwise

i

with 7;(t) the output torque, g, (t) the joint angle reference trajectory, K;(t) the phase depen-
dent stiffness and D;(t) the phase dependent damping. It should be noted that here we did
not explore the use of other possibly interesting control methods. We also do not explicitly
investigate the role of variable impedance for actuation of the wearable robot. Our main focus
is on the development of the methodology and we build on evidence from our previous results
towards variable impedance control being suitable for human locomotion optimization.

The joint angle trajectories of the wearable robot joints can be more complex, or variable, due
to the non-linearity of the joint angle transfer function of the parallel structure. We therefore
increase the number of points for the piecewise polynomial function for g, () to 5 (instead of
4 previously).

Apart from the actuated wearable robot joints, the ankle joint is also actuated using the same
type of step controller. The remaining wearable robot joints are furthermore controlled using
a simple spring/damper controller:

1: = K;(qr, - q) - D4, (5.12)

of which the stiffness Kj, rest angle ¢g,, (constant) and damping D; are open for optimization.

164

5.4. Optimization

5.4 Optimization

The optimization procedure for the co-design of the morphology of the wearable robot and its
control deserves some special consideration. On the one hand we do not only optimize for a
fixed set of numerical parameters, but are required to optimize for structurally different sets of
parameters (i.e. for the different topologies and actuator positioning). On the other hand, we
know beforehand which types of solutions we would like to explore, and those solutions can
be easily enumerated (i.e. 10 topologies with actuator pairs varying from 9 to 15). It is therefore
neither completely fixed, nor completely open-ended.

5.4.1 Algorithm

The Metamorphic Particle Swarm Optimization algorithm developed in chapter 3 is partic-
ularly well suited for this type of optimization, and in fact was specifically designed for it. It
allows for guided exploration of a fixed number of known parameter spaces, using cooperation
principles to transfer particles between parameter spaces akin to the original Particle Swarm
Optimization method.

In the parlance of MMPSO, the wearable robot co-design optimization has a single parameter
pool containing 126 parameter groups. Each group is mutually exclusive within the pool, so
only a single topology and actuator pair can be active at the same time. A second parameter
pool with a single parameter group is used to contain all of the common parameters to be
optimized (such as for the ankle joint actuation and wearable robot segment lengths). Each of
the 126 parameter groups corresponding to a particular topology and actuator pair contains
the parameters for the active joints in that group.

5.4.2 Parameterization

There are different ways in which we can parametrize the wearable robot morphology and
control. For the control we choose the same parametrization as we have used in the previous
chapter, i.e. a differential encoding of the trajectory signals. For the morphology we can
choose between two different encodings. The first encodes for each set of connected links the
angle between the links, and for each individual link, its length. The second approach simply
encodes, for each joint, its position in Cartesian space, from which the segment lengths can
then be derived by means of looking at the connectivity of joints according to the topology.
Both encodes require the same number of parameters (e.g. 4 parameters for topology 1 and 6
parameters for topology 5).

An important difference between the two encodings is the manner in which a change in a
parameter results in a change in the morphology. Using the first encoding, a change in a single
parameter, for example a joint angle, causes a rotation of a (sub)structure of the morphology.
On the other hand, using the second encoding, a single parameter change simply results in

165

Chapter 5. Co-design of human assistive devices

Table 5.2 - List of open parameters

Parameter Boundaries Description

Morphological parameters

Body joint
x (-0.15, 0.15) m The Cartesian x-position of the joint
z (0.1, 1.3) m The relative z-position of the joint on
the segment at which it is placed
WR joint
Zrel o, 1 The Cartesian z-position of the joint
Control parameters
Active joint
Gx,..xs (0, 1 Differential x points for reference po-
sition signal g
dy,...ys (=7, @) rad y data points for reference position sig-
nal g
Kx, % o, 1 Differential encoding of stiffness step
transition
Ky, y (0, 120000 Nmrad™! Active impedance stiffness
Dy, x, 0, 1 Differential encoding of damping step
transition
Dy, y, (0, 60) Nmsrad™! Active impedance damping

a global Cartesian displacement. It is not entirely intuitive to say beforehand which type of
encoding is better than the other. Here we chose to use Cartesian placement of joints since
parameters encoding for morphology are more decoupled in a sense. The Cartesian placement
is done on the human model in the upright position, and is therefore equal for the right and
left leg.

For joints which are attached to the human body, we use a relative displacement encoding,
i.e. avalue from 0 to 1, encoding where on the corresponding segment between the parent
and child joint the attachment is placed. For the wearable robot joints which are not directly
attached to the body, we use a global Cartesian x and z encoding, allowing joints to be placed
in a bounding rectangle around the human body.

Table 5.2 lists all the open parameters optimized in this work.

166

5.4. Optimization

Mass distribution

The mass distribution of the wearable robot is automatically derived from its morphological
configuration and the placement of actuators. We use reasonable estimates for the inertial
properties of the actuators, passive spring/dampers and wearable robot segments, but at this
time do not model these components precisely based on available physical devices.

Each actuator in the system is modeled as an object with a mass of 2kg and a cylindrical
moment of inertia around the axis of rotation for a cylinder with a radius of 5cm. Similarly,
the passive joints are modeled using a weight of 0.5kg and also have a cylindrical moment
of inertia. The wearable robot segments are approximately modeled after cross-sectioned
aluminium bars with a thickness of 1cm and a width of 3.5 cm, resulting in a density of =
0.7kgm™! segment length. After wearable robot joints are placed, resultant mass m, center of
mass CoM and inertia [for each body is determined by composition of the individual inertial
properties belonging to the same joint. Triangular segments (featured in topologies 4 to 10)
are modeled using three segment bars.

5.4.3 Objectives

Since MMPSO can run any type of optimization algorithm in the inner layer, we can readily
use particle swarm optimization with lexicographic ordering in the inner layer. We use the
same structure for the lexicographic objectives as used in the previous chapter, with a few
modifications. Two new objectives are added to the previously used objectives. The first is
an explicit check on segment size. Since the parametrization does not explicitly encode for
segment length, the resulting segments can become very long in certain cases. We therefore
introduce an objective which verifies if segments are not longer than a certain size. This
maximum size is set to 0.7 m in this work, based on approximate maximum length at which
the segments would start to buckle according to their modeled material. The second new
objective is one verifying that the kinematic configuration does not become singular, and is
explained in greater detail in the next section.

When we initially ran simulations, we noticed that it was difficult to optimize for speed and
assist time in sequence. An improvement in assist time would directly have a negative impact
on the speed, thus oscillating between the two objectives. This is one of the possible disad-
vantages of lexicographic ordering of objectives. To resolve this issue we instead combine
the two objectives into a single lexicographic objective by using a multiplicative aggregation
function. Note that the design of an objective function is still an empirically guided effort,
which often requires several iterations of tuning before desired results can be obtained. Since
we found it significantly more difficult to obtain gaits which were self-stabilizing, we also
allow a maximum assist time of 10% during the gait. Finally, we use power (i.e. torque times
angular velocity) instead of simply torque. We do so because due to the non-linear nature of
the transfer function relating the joint velocities of the wearable robot and the human joints,
we no longer assume that torque is a reasonable estimate of energy. If we were to use torque

167

Chapter 5. Co-design of human assistive devices

instead, we would bias towards possibly fast moving wearable robot joints requiring relatively
small torques. The final objectives are listed in table 5.3.

Table 5.3 - Lexicographic Objectives

Objective Until

1. time time = maxtime

2. segment size segmentsize < maxsegment size

3. singularity singularity = 0

4. speed match - no assist time | speed match = 0.95 & assist time < 0.1
5. -power oo

5.4.4 Singularities

There are two types of singularities that we want to avoid during the co-design simulations.
The first type is caused by not being able to reach a certain hip/knee joint angle combination
due to the wearable parallel structure not allowing to reach that far. This effectively creates
unidirectional singular configurations, and often happens for example in serial manipulators
when trying to reach for a target Cartesian position which is out of reach. In our case this
would mean that some hip/knee angles could not be reached during nominal gait, which is
undesirable. The second type of singularity is the one discussed earlier, where there is a loss of
mobility. In these cases it is no longer possible to control the system. Additionally, we require
that the human is always able to control the system, and thus the hip and knee joints should
also never become singular.

The aim of the singularity verification procedure is to quickly discard solutions which are not
interesting, without the need to simulate them extensively. We begin by obtaining the nominal
joint angle trajectories during normal walking from Winter (2009). We then discretize these
trajectories such that we obtain N pairs of (hip, knee) joint angles. We then verify both types
of singularities for each pair of (hip, knee) angles, given the wearable robot as given by the
parameters of the solution to be evaluated. Furthermore, we also evaluate singularities for
+A° offsets at each point to make sure there are no singularities in the neighborhood of the
nominal gait cycle.

The determination of the first type of singularity is closely related to the problem of inverse
kinematics. Given (hip, knee) joint angles, we want to determine the dependent joint angles
of the wearable robot (since we only have two degrees of freedom), given the loop closure
constraints. If the conditions for the determination of these dependent joint angles are ill,
then the configuration has become singular. There are various ways in which to solve for
the dependent joint angles. If a closed form solution of the system is known (i.e. a function
mapping independent joint angles to dependent joint angles), then such conditions can be
readily obtained from the closed form equations (i.e. in the case of singularities there will be
no solution). However, as mentioned in chapter 2 when discussing closed loop systems, it is

168

5.4. Optimization

hard to derive closed form solutions in general, and it is not the approach we are taking.

If a closed form solution is not available, an iterative approach can be used instead. A funda-
mental quantity that enables this is the Jacobian. Recall from section 2.6.8 that the Jacobian
can be used to map joint velocities to Cartesian velocities, i.e.:

x=Jq (5.13)

Therefore, given a (small) error Ax in location of an attachment point on the human body,
and the end-effector of the closing loop joint (i.e. the loop closure error), we can obtain joint
velocities that would reduce this error by inverting this equation:

g=71"'Ax (5.14)

Of course, J is linearized, and thus the relationship between ¢ and x is only approximated
linearly. Therefore, care has to be taken when the error Ax is large. This is usually solved by
performing equation 5.14 iteratively, reducing Ax over a number of steps. Furthermore, J is
not always invertible in which case the pseudo inverse J* can be used instead.

Since codyn readily provides the required Jacobians, we can easily perform this iterative Jaco-
bian approach for solving the inverse kinematics. To detect singularities, we simply observe Ax
and if we are unable to reduce it until some (small) threshold, we decide that the configuration
is singular. The same procedure is also used to determine the initial conditions of the wearable
robot given some initial condition for the human joints, i.e. initialized inside the gait.

If a singularity is not reached when closing the loop closure joints on the desired (hip, knee)
configuration we can proceed with verifying the second type of singularity. Again, the Jacobian
comes to our rescue. The principal idea is that we need to verify if applying a velocity to an
actuated joint would result in a non-zero velocity on desired joints (in our case those of the
human), while not violating the kinematic constraints imposed by the loop closure joints. To
do so we first construct the loop closure Jacobians:

ic=Jcq, (5.15)

for each loop closure joint ¢, mapping joint velocities g to a Cartesian velocity X, in the
coordinate frame of joint c. We then create an extended Jacobian by stacking the individual
Jacobians:

I
J=|: (5.16)
IN

Finally, we can create a mapping from one joint velocity to another under the kinematic
constraint from the loop closure joints by taking the null space projection of the Jacobian, i.e.

169

Chapter 5. Co-design of human assistive devices

a matrix N such that:
JNg=0 (5.17)

In other words, N maps joint velocities such that they do not affect the loop closure constraints,
and N is obtained by:

N=I-J"J (5.18)

Having obtained N, the occurrence of singularities can be easily verified. Given a actuated joint
i and an observable joint j, we can simply verify whether N(; ;) is non-zero. If so, it means that
a velocity in i results in a velocity in j (and vice versa) by effect of the loop closure constraint.
If N(;, j is close to zero, we decide that the configuration is singular in i with respect to j. We
then verify this for 1) the actuated wearable robot joints towards the hip and knee joints, and
2) the hip and knee joints towards themselves. The second check ensures that the human is
always able to control the motion of the robot.

There is one snag related to determining the singularity of the loop closure joints themselves.
Since they are not represented by a generalized coordinate, we can not use N to determine
the influence of a velocity on a loop closure joint to other joints in the system. There are
two ways in which this can be solved. The first is to create new systems in which a different
joint becomes the loop closure joint, leaving us free to use the N of that system to determine
singularity of the original closure joint. This however requires the definition of multiple models
for each topology which is rather inconvenient. The other solution, which is the one we use
here, is to use the loop closure velocity Jacobian. Recall that the loop joint spatial velocity is
defined by:

vi=Ui-71)q, (5.19)

where J; and J; are respectively the Jacobians of the parent and child bodies of the loop closure
joint. Thus, given a mapping of loop closure joint generalized velocity g, to its spatial velocity
vj (given by the motion subspace of the loop closure joint), we can use the inverse of the loop
closure velocity Jacobian to obtain how the spatial velocity v; affects the generalized velocities
of the system q:

g=Ui—-T)"Scqc, (5.20)

with S, the motion subspace of loop closure joint c. We can then simply check whether a
velocity in an actuated loop closure joint affects the hip and/or knee joint, thus verifying
whether or not the loop closure joint is singular. The overall procedure for verifying that a
given configuration is not singular for a range of (hip, knee) joint angles is then as follows:

1. Use the loop closure joint end-effector Jacobian (pseudo)inverse to iteratively solve for

170

5.5. Results

initial conditions of the (hip, knee) joint angle pair

2. If the loop closure can not be closed in some iterations, decide the configuration is
singular

3. Compute the null space N of the extended Jacobian containing all loop closure joint
Jacobians

4. Determine if the knee or the hip joint is singular towards itself, if so the configuration is
singular

5. For actuated wearable robot joints determine whether they are singular towards the
knee and hip joints by using N in case of non loop closure joints and equation 5.20
otherwise. If singular in either hip or knee, then the configuration is determined singular

This verification is performed each time before simulation starts, and solution which are
singular are discarded directly without further simulation.

5.5 Results

We run the MMPSO optimization with 200 particles, since there are many possible configu-
rations to explore. Furthermore, we run it for 800 iterations thus allowing time to properly
explore configurations as necessary, before converging on a single configuration and finishing
the optimization. The probabilities P,, P; and Py were chosen as shown in figure 5.8. The
probabilities are chosen empirically, however not arbitrarily. Since we explore a large space, we
allow ample time for parameter subspaces to be explored through the exploration probability
pPe- We then allow, through P;, more intense exploration of particles’ local best known con-
figuration subspaces. Finally, P; becomes active around iteration 500 and ensures particles
converge on a single global best known parameter subspace and spend the last 200 iterations
fully exploring the solutions found there.

Table 5.4 — Top 3 obtained power solutions

Topo Mass CoM (z) Segmentsize Power Torque Assisttime
2 83.3 (+13.3) 1.07 (-0.03) 0.3-0.46 462 1141 0
5 83.9 (+13.9) 1.02(-0.08) 0.2-0.52 748 418 0.01
3 83.5 (+13.5) 1.03 (-0.07) 0.1-0.64 1018 818 0

Table 5.4 lists various quantities of the 3 best obtained solutions in terms of power. As can be
seen, optimizing for power leads to different optima as when optimizing for torque, since the
second ranked solution for power would rank first when comparing only torque.

Furthermore, what is interesting to notice is that although each solution has optimized for a
different topology, the added mass (= 13.5kg) as well as the total center of mass of the system
is approximately the same. Note that a fixed amount of mass of 11kg is already added in all
configurations due to the 4 actuators (each 2kg) and 6 passive revolute joints (each 0.5kg). The

171

Chapter 5. Co-design of human assistive devices

0.15 T
— P,
Py
_})'g
0.1

Probability

0.05 —\ .

0 200 400 600 800
Iteration

Figure 5.8 — Probability curves determining the rate at which particles are mutated to a different
parameter subspace. The curves are designed such that there is early exploration and late
convergence towards a global optimum. Since the optimization problem is complex, particles
mutate on average only every 20 iterations, as determined by P, in the beginning. From
iteration 500, particles start to transfer to the globally best known parameter subspace by Pg.

center of mass, when compared to the non-augmented human model, is moved only slightly
downwards, a maximum of 10 cm. What is particularly interesting though is that the center
of mass has only changed in the z (up/down axis) direction. The wearable robot is otherwise
perfectly balanced in terms of mass between the front and back sides, which was not explicitly
optimized for. This can be explained by the fact that balancing the system as such improves
stabilization of the system with minimum power requirements.

0| o PR o
/ o \ 0 ° \
] » | .
\ Vs
O >e @/>o\ °
<@ < (6] «®
/
<@ PR o
2N AN 2N

Figure 5.9 — Morphology of the 3 best obtained results. From left to right, topology 2, topology
5 and topology 3. Note that the wearable robot segments are offset in this schematic view from
their original position, for clarity.

172

5.5. Results

There are some further interesting observations to be made from the obtained solutions. In
the first, the wearable robot joints 2 and 3 are placed very closely to the knee, and the joints
1 and 5 are placed relatively close to the hip. As such, the obtained morphology resembles
that of an anthropomorphic structure, in terms of transfer of forces. Interestingly however,
actuators are both placed relatively closely to the hip, thus concentrating most of the wearable
robot mass at the level of the hip.

The second morphology features a complex linkage system which operates in an accordion
like manner, expanding during swing phase and contracting closer to the body in the stance
phase. Interestingly, the wearable robot joint 1 and joint 3 perform actuation of the system,
while the relatively complex linkage system composed of joints 2, 4, 5 and 6 provides transfer of
the appropriate movement to the human joints. The gait of this second solution is somewhat
less natural. It makes fairly large steps, which is likely the cause of it performing worse (in
terms of power) than the first solution. The last morphology is in a way quite similar to the
second morphology, since again joints 1 and 3 actuate the system while the internal linkage
system between the upper leg and the lower leg is completely passive. However the resulting
gait is optimized as to keep the knee straight at all times, leading to a relatively unnatural gait.
Figures B.3 and B.4 in appendix B show snapshots of the gaits of the first two solutions.

Next we can look at the behavior of the MMPSO optimization algorithm. In particular, we
are interested in how well MMPSO has explored the parameter configuration spaces. Figure
5.10 shows a visiting frequency plot for the first two best obtained solutions (the third shows
the same characteristics). We can immediately see that most of the parameter subspaces
are visited, except for 4 spaces which are never visited. On average, = 700 evaluations are
performed in each subspace, while the optimal subspace has seen = 61700 evaluations (note
that the scale in the figure is a log, scale). This large difference is due to the global exploitation
probability Py which we designed such that the last 200 iterations were mostly spend in a
single subspace.

Not all parameter subspaces are explored equally, which is due to the stochastic nature of
our optimization algorithm. It is therefore always important to run an optimization several
times with different initial conditions. Additionally, the algorithm does not guarantee visiting
all subspaces, as can be seen in figure 5.10. This is also not the purpose of MMPSO, since in
that case it would be more appropriate to simply do a systematic search. Instead, MMPSO
is designed such that it rapidly explores multiple possible spaces, while making informed
decisions on which of those spaces are most interesting to explore further.

Videos of the resulting wearable robot solutions can be found at

173

http://thesis.codyn.net/videos/codesign/last
http://thesis.codyn.net/videos/codesign/last

Chapter 5. Co-design of human assistive devices

1 2
15
14
13 4,096
12
11 1,024
10
=
—
S 8
5
g 7 64
<
6
5 16
4
4
3
2
1
1

1 2 3 456 7 8 91 12 3 456 7 8 910
Topology Topology

Figure 5.10 — Number of evaluations in each parameter subspace. Each topology (on the x axis)
corresponds to the topologies shown in figure 5.5, while each actuator pair corresponds to the
pairs listed in 5.1. Cells indicated with 0 are invalid configuration spaces (i.e. topology 1 has
only 9 possible actuator pairs). Furthermore, cells indicated with x are not visited at all while
the cell marked with T indicates the topology and actuator pair of the optimal solution found
in that particular run.

5.6 Discussion

In this chapter we used all methods previously developed: 1) closed loop rigid body dynamics
and efficient model parametrization from chapter 2; 2) simultaneous optimization of known
sets of parameter configuration spaces and their continuous parameters, as well as large
scale population based optimization from chapter 3; and 3) the impedance control and
lexicographic ordering method for multiobjective optimization from chapter 4. We show how
all these combined can be used to derive a methodology for the co-design of the structure
and control of a wearable, lower extremities robot to effectively explore the design of a non-
anthropomorphic augmenting structure for human locomotion assistance.

The open-ended exploration of the morphology and control of such a device leads to a complex
optimization problem with many possible parameter configuration spaces and, within each,
a large space of continuous parameters to be optimized. Nevertheless, we show that our

174

5.6. Discussion

methodology is able to explore this design space and obtain wearable robot morphologies with
varying dynamical properties. In particular, it is interesting to note how the mass distribution
of the structure is optimized such as to have a minimal impact on the center of mass of the
total system when compared to a human model, without having specified the need for it
explicitly. Additionally, we see that all obtained solutions favor placing at least one actuator
attached to the torso (just above the hip), which we presume to increase stability. The non-
anthropomorphic structure is able to transfer motion to the hip and knee joints through a
series of parallel structures which would not be possible using a conventional design.

In the results shown here, we do not obtain a more energy efficient design of a wearable robot
than the anthropomorphic case. The obtained solutions all require more power than if we
would simulate an anthropomorphic wearable robot with the same material properties (i.e.
masses) as the ones used for the non-anthropomorphic wearable robot during our study. How-
ever we did not set out with this goal in mind. Instead, we show that our methodology enables
the effective exploration of a possible solution space leading to novel and not always intuitive
solutions. Our methodology furthermore allows one to easily optimize only parts of the re-
sulting system when a certain interesting dynamical property of a structure is found, leading
to an iterative co-design method. For example: 1) the morphology could be fixed, focusing
optimization efforts on (possibly more complex) controllers only; 2) only actuator placement
could be explored in a single topology; or 3) only a subchain of the non-anthropomorphic
structure could be left open for further optimization.

In many ways, the results shown in this study only touch upon the subject of the co-design of
a device as we propose. It should be noted that we do not aim to provide a finalized design.
Rather we propose that our methodology is a viable solution for exploration of possible non-
conventional designs. The methodology is general enough to also allow for the exploration
of conventional (i.e. anthropomorphic) design, where it could be used to optimize for mass
distribution, minor actuator placement adjustments or other morphological design param-
eters. Although we show that this method obtains reasonable locomotion gaits supporting
the human body, exploring many possible morphologies and corresponding control of those,
there are still many directions left to explore further.

1. Interaction forces: We presented in this chapter a method to obtain the interaction
forces in closed loop systems (which is provided by codyn currently), however we did
not optimize specifically for these forces. Although the nature of the optimization is
such that, implicitly, by optimizing for the power of the wearable robot, the interaction
forces should be minimized. In other words, the wearable robot is more efficient the
more power is transferred to the human joints, instead of ending up in constraint forces.
Nevertheless, there are no guarantees towards this end and it would be interesting to
add a lexicographic objective for a maximum allowed interaction force on the human
limbs.

2. Ankle support: In our present study we only investigate the actuation of the hip and knee
joints through the wearable robot, leaving the ankle conventionally actuated. However,

175

Chapter 5. Co-design of human assistive devices

176

arealization of such a device would at the very least need a way to transfer load from
the wearable robot to the ground, since the added mass from the device would add too
much load on the human body. It would therefore be necessary to either 1) design an
ankle device connected to the hip/knee device which transfers the load, or 2) co-design
the actuation of the ankle as well.

Passive elements: The non-actuated joints in our study are completely passive. It is
however well known that it is possible to store and release energy during certain phases
of the gait, enabling more energy efficient devices. It would be interesting to explore
the incorporation of such energy stores in the passive joints of the wearable robot
during the co-design optimization process (Donelan et al., 2008). Examples of possible
avenues are the exploration of rotational spring dampers, clutches allowing for the
temporary locking and unlocking of a structure (Herr, 2004) or the addition of linear
elastic elements (van den Bogert, 2003).

Human adaptation: Our study is only concerned with the full actuation of the wearable
robot, while the human inside is completely passive. This resembles more or less the
case of a paraplegic, but does not correctly represent other possible uses for such a
design. The adaptation of a human to a device can be taken into account while assisting
only a certain amount of the full locomotion gait, as opposed to providing all of the
necessary power (Ronsse et al,, 2011a). Furthermore, the role of morphology and control
for various pathologies (physical limitations or unnatural motor control strategies) can
be explored by modeling such pathologies in simulation (Delp et al., 2007).

Generalization: Here we have only explored applying our methodology to a specific
case. Although the methodology itself is general (i.e. the algorithms and methods do
not assume domain specific information), the design of the objectives and choice of
parametrization is still specific to the chosen problem. In Pouya et al. (2010) we show
that the methodology can be applied to other domains, but this only gives emperical
evidence towards generalization. As is usual with optimization, the obtained results
are sensitive to the specific objectives that were optimized for. In our experiments
we specifically optimized only for steady state locomotion in the sagittal plane. It is
therefore not unreasonable to assume that the obtained morphologies and control are
specific to this task, and do not necessarily generalize to a design suitable for a larger
range of tasks. However, the method itself does not exclude the design of a process in
which the objectives include a multitude of tasks (for example including sitting, standing
up and walking stairs).

Conclusion

We started out looking at the possibility of the co-design of a lower extremities, wearable robot
using evolutionary optimization strategies. After having performed various

we realized two important things, 1) there is great potential for novel and unintuitive design
strategies arising from the co-design of morphology and control and 2) the simulation problem
is a complex one and requires a state of the art and, importantly, open simulation environment.

We thus took a step back, and started working on a framework which resulted in codyn, a
state of the art modeling and simulation environment for the design of coupled dynamical
systems with a specific focus on coupled oscillators and rigid body dynamics. Driven by the
desire to create an open, free to use, fast and well documented framework, we created soft-
ware in which modeling coupled dynamical systems is both expressive and well performing.
Furthermore, unsatisfied with the currently available, state of the art RBD simulators suitable
for accurate simulations including precise, hard contact models and sophisticated closed
loop dynamics modeling, we provided a fully declarative implementation of RBD as described
by Featherstone (2008). The resulting models are easy to parametrize and can be quickly
translated, without loss of generality, to a low level implementation suitable for simulation
on Real Time, embedded and micro-controller systems. By making the framework available
under an open and free license at , results obtained using codyn can be
readily replicated and improved upon since models are easily shared. It therefore provides
a basis upon which scientific work can be rapidly advanced. codyn is not suitable for all
types of dynamical systems. In particular, it only supports systems which can be modeled
with ordinary differential equations. It also does not support dynamical systems with fully
variable dynamical structure which should change after the model has been constructed.
These limitations do not affect the work presented here, but it means that codyn is unsuitable
for the modeling of certain systems, such as modular robots. Furthermore, although the avail-
able contact models are suitable for locomotion, they are limited to point contacts and more
complex, multi-contact models (with varying geometries) are currently not available.

Similarly, although less novel, we also developed a framework for the purpose of large scale,
population based optimizations in a multi-user environment, in which simulation tasks are

177

http://thesis.codyn.net/videos/codesign/crazybipeds.mov
http://www.codyn.net

Chapter 6. Conclusion

automatically scheduled on available resources, such as a cluster. Easy to configure and ready
to deploy, it has provided the requisite infrastructure for many scientific works which would
otherwise have been more time consuming to accomplish. A variety of population based
optimization methods are provided within this open and freely framework, including
Metamorphic Particle Swarm Optimization.

MMPSO is a Particle Swarm Optimization based algorithm specifically designed for solving
problems for which different possible solution structures exist, each with their own (possibly
overlapping) set of continuous parameters. The codesign of a wearable robot is an example
of such a problem, where the structure space consists of the wearable robot topologies and
actuator placement and the parameter space consists of wearable robot Cartesian posiition
and control parameters. MMPSO uses cooperative strategies, similar to those of PSO, to
transfer particles between parameter subspaces in a probabilistic manner. These probabilities
can be chosen in an informed manner, based on the complexity of the problem, the number
of total subspaces, the number of particles and the maximum number of iterations.

To validate our developed tools for the codesign of the wearable robot, we first started consider-
ing the occurrence of natural human gait using impedance control by optimizing for high-level
objectives only. Even though we only optimized for a specific target speed and minimized for
a measurement of energy using lexicographic ordering of the objectives, we reliably obtained
walking gaits with various global human characteristics. This validated both our optimization
method as well as our control method (i.e. impedance control) as a reasonable representation
of humanoid actuation. To investigate the role of human morphology for the performance
of locomotion, we then applied the exact same method to a model of the CoMan humanoid
robot. Here we found that it is not enough for the humanoid robot to be biomimetic, but that
care should be taken in the design of its morphology when looking at locomotion. In particular
we found that the feet were fundamental in obtaining any kind of reasonable gait and that
the location of the center of mass significantly affected locomotion performance. To show
the role that variable impedance can have, we furthermore performed a perturbation study
in simulation where we observed that optimizing only for stable walking, impedance was
modulated such that periodic perturbations during the swing phase could be reliably rejected.

We have thus far performed the work in simulation using 2D, planar models to explore human
locomotion optimization in the most important plane. Of course, simulations are usually not
easily transferred to reality, and future work includes the transfer of our developed controllers
to the CoMan robot to validate if our obtained gaits are suitable for walking using the robot.
There are several difficulties in doing so. First, we do not optimize for walking in 3D and the
resulting controller thus lacks control of the third dimension. Furthermore, even though our
controllers are stable in simulation, and are shown to exhibit a certain robustness, we do not
expect these local and open-loop controllers to be sufficient for stabilization of the real robot.
A possible way forward would be to use our optimized impedance controllers as feed-forward
pattern generators while a second, global stabilization feed-back controller modulates the
control signals to obtain a desired global stability.

178

http://optimization.codyn.net/

Finally, we come back to the co-design of the lower extremities, wearable robot for human
locomotion assistance. We combined all of our developed tools, methods and algorithms in
the design of a methodology for the effective optimization of various wearable robot structures
and their control. We limited ourselves to providing support for the hip and knee human
joints, leaving the ankle conventionally actuated. A candidate selection of possibly interesting
topologies resulted from an exhaustive enumeration taking into consideration the range of
motion and mobility of the structure. Furthermore, we developed a method to obtain all
possible pairs of actuated joints which fully described the motion of the system. By using
codyn for the modeling, we could easily parametrize the morphology for each topology as well
as the control. Furthermore, codyn provided all of the methods necessary to verify singularities
of the wearable robot structure and those of the human joints during nominal gait, leading to
an important pruning step in viable morphological solutions. We then performed an intensive
optimization using MMPSO to explore 126 morphological subspaces, each with their own set
of parameters, finally obtaining a number of non-anthropomorphic wearable robot solutions.

Being a complex optimization problem, and due to the stochastic nature of the optimization
method, we do not always obtain good solutions which are able to provide a stable walking
gait. Of those that do, we observed that a reasonable human-like gait (given the complexity)
can be obtained while still optimizing only for high-level objectives. The obtained wearable
robot structures expose various interesting characteristics, from which the most prominent
is seen in the mass distribution: each solution has optimized such as to minimize changing
the center of mass location of the complete system (human and wearable robot), leading to
increased stability. Furthermore, at least one actuator is always attached to the torso.

There are still many venues for exploration of the co-design approach for the possible design
of a non-anthropomorphic wearable robot, such as exploration of interaction forces, energy
stores and proper ankle support. Our optimized non-anthropomorphic solutions are not more
energy efficient than an anthropomorphic design using the same materials. The methodology
that we have developed is meant as an aid in the design process, where iterative refinements
and optimizations can be used to explore a morphological and parametric space which is
otherwise too vast.

179

i\ Models

codyn model A.1 - Basic CoMan model definition in codyn. This makes use of an additional file (provided below in
model A.2) which specifies the inertial and kinematic properties. This file constructs the rigid body dynamics on

top of the base model.

require "physics/physics.cdn"
require "physics/contacts.cdn"

The model properties are defined in a separate file. This allows

for a more modular reuse of the model parameters, for other
purposes than forward dynamics.
include "model.cdn"

Here we apply physics specific templates to the various nodes
defined in the model.
node | "coman" : physics.system {

Apply joint templates to the model

node | "torso" : physics.joints.planary {}

node | "@limbs" : physics.joints.revolutey {}

Kinematic structure

edge from "torso" to "hip{Right,Left}" : physics.
edge from "hip{Right,Left}" to "knee@l" : physics.
edge from "knee{Right,Left}" to "ankle@1" : physics.

Add two hard contact points in each of the ankles. We use
from model.cdn for the dimensions of the foot so they are
configurable

node | "ankle{Right,Left}" {

Contact point on the back of the heel

node "c1" : physics.contacts.hardPlanaryY {
soleXMin = "—@heellength”
location = "[soleXMin; 0; —@footheight]"

}

Contact point at the front of the foot

node "c2" : physics.contacts.hardPlanaryY {
soleXMax = "@footlength — @heellength - @footlength
location = "[soleXMax; 0; —@footheight]"

}

joint {}
joint {}
joint {}

defines
easily

* @toelength"

181

Appendix A. Models

include "physics/model.cdn"
include "physics/dynamics.cdn"

codyn model A.2 - CoMan inertial and kinematic properties. This file is used by model A.1 to construct the full
rigid body dynamics model.

defines {
1limbs = "{hip,knee,ankle,toe}{Right,Left}"
footlength = "0.15"
heellength = "0.03"
footheight = "0.095"

toelength = 0.25

node "coman" {
node "torso" {

com = "[0.00919962; -0.000250202; ©0.212992]"
I = "[0.319291, 0.000513593, -0.00413699;
0.000513593, 0.169801, -0.000237841;

-0.00413699, -0.000237841, 0.179851]"

m = "14.4847"
tr = "[0; 0; 0.5268]"
}
node "hipRight" {
com = "[0.000739959; 0.00194785; -0.100464]"
I = "[0.0271576, 3.52594e-05, 0.000132356;
3.52594e-05, 0.0265146, —-0.00144774;

0.000132356, -0.00144774, 0.00298617]"

m = "3.61731"
tr = "[0; -0.0726; 0O]"
}
node "hipLeft" {
com = "[0.000739959; -0.00194785; —0.100464]"
I ="[0.0271576, -3.16989e-05, 0.000132356;
-3.16989e-05, 0.0265146, 0.00158918;

0.000132356, 0.00158918, 0.00298617]"

m = "3.61731"
tr = "[0; 0.0726; 0O]"
}
node "kneeRight" {
com = "[0.00246127; -0.00530996; -0.0859895]"
I = "[0.0040604, 1.12272e-05, 1.2261e-05;

1.12272e-05, 0.00400565, ©0.000518992;
1.2261e-05, 0.000518992, 0.00124141]"

m = "1.40982"
tr = "[0; 0; -0.2258]"
}
node "kneeLeft" {
com = "[0.00246127; 0.00530996; -0.0859895]"
I = "[0.0040604, 1.12272e-05, 1.2261e—-05;

182

1.12272e-05, 0.00400565,
1.2261e-05, ©0.000518992,

m = "1.40982"
tr = "[0; 0; —-0.2258]"
}
node "ankleRight" {
com = "[0.00508618; —0.00479956;
I = "[0.00229076, 3.25721e-05,

3.25721e-05, 0.00263102,
0.000333951, 0.000153469,

m = "1.39639"

tr = "[0; 0; -0.201]1"
}
node "ankleLeft" {
com = "[0.00508618; 0.00479956;
I ="[0.00229076, —-1.73029e-05

-1.73029e-05, 0.00263102,

0.000518992;
0.00124141]"

-0.0204323]"

>

0.000333951, 0.000398517,

m = "1.39639"
tr = "[0; 0; -0.201]1"

0.000333951;
0.000153469;
0.00174337]"

-0.0204323]"
0.000333951;
0.000398517;
0.00174337]"

183

‘ Complementary figures

185

Appendix B. Complementary figures

Figure B.1 — Rendering of a walking sequence optimized for the CoMan robot using a variable
stiffness and damping controller (step). The gait shown here is relatively slow, 0.44ms ™!, but
manages an efficient cost of transport. See also section 4.2 for more details on the methods
used to optimize this gait.

186

Figure B.2 — Rendering of a walking sequence optimized for the CoMan robot using a vari-
able stiffness and damping controller (step) while under perturbation. The perturbations are
applied randomly on the ankle in the direction of locomotion during the swing phase. The
resulting controller, although open loop, is able to self-stabilize by modulating the stiffness
and damping periodically. See also section 4.2.4 for more details on the methods used to

optimize this gait.

187

Appendix B. Complementary figures

Figure B.3 — Rendering of a non-anthropomorphic wearable robot co-designed for human
locomotion. See chapter 5 for more details on the methods used to optimize this wearable
robot.

188

Figure B.4 — Rendering of a non-anthropomorphic wearable robot co-designed for human
locomotion. See chapter 5 for more details on the methods used to optimize this wearable
robot.

189

Bibliography

Mostafa Ajallooeian, Jesse van den Kieboom, Albert Mukovskiy, Martin A Giese, and Auke]
Ijspeert. A general family of morphed nonlinear phase oscillators with arbitrary limit cycle
shape. Physica D: Nonlinear Phenomena, 263:41-56, 2013.

Frank C Anderson and Marcus G Pandy. Dynamic optimization of human walking. Journal of
biomechanical engineering, 123(5):381-390, 2001.

Josh Bongard, Victor Zykov, and Hod Lipson. Resilient machines through continuous self-
modeling. Science, 314(5802):1118-1121, 2006.

Yvan Bourquin, Auke Jan Ijspeert, and Inman Harvey. Self-organization of locomotion in
modular robots. Unpublished Diploma Thesis, http://birg. epfl. ch/page53073. html, 2004.

Rodney A Brooks. Artifical life and real robots. In Toward a practice of autonomous systems:
Proc. of the 1st Europ. Conf. on Artificial Life, page 3, 1992.

Jonas Buchli, Ludovic Righetti, and Auke Jan Ijspeert. A dynamical systems approach to
learning: a frequency-adaptive hopper robot. In Advances in Artificial Life, pages 210-220.
Springer, 2005.

Jonas Buchli, Evangelos Theodorou, Freek Stulp, and Stefan Schaal. Variable impedance
control-a reinforcement learning approach. In Robotics: Science and Systems Conference
(RSS). Citeseer, 2010.

John C Butcher. Numerical methods for ordinary differential equations. John Wiley & Sons,
2008.

GA Cavagna, P Franzetti, and T Fuchimoto. The mechanics of walking in children. The Journal
of physiology, 343(1):323-339, 1983.

M. Clerc and J. Kennedy. The particle swarm - explosion, stability, and convergence in a
multidimensional complex space. Evolutionary Computation, IEEE Transactions on, 6(1):
58-73, 2002.

Maurice Clerc. The swarm and the queen: towards a deterministic and adaptive particle
swarm optimization. In Evolutionary Computation, 1999. CEC 99. Proceedings of the 1999
Congress on, volume 3. IEEE, 1999.

191

Bibliography

Maurice Clerc. Discrete particle swarm optimization, illustrated by the traveling salesman
problem. In New optimization techniques in engineering, pages 219-239. Springer, 2004.

Carlos A Coello Coello. A comprehensive survey of evolutionary-based multiobjective opti-
mization techniques. Knowledge and Information systems, 1(3):269-308, 1999.

Steve Collins, Andy Ruina, Russ Tedrake, and Martijn Wisse. Efficient bipedal robots based on
passive-dynamic walkers. Science, 307(5712):1082-1085, 2005.

Steven H Collins, Martijn Wisse, and Andy Ruina. A three-dimensional passive-dynamic
walking robot with two legs and knees. The International Journal of Robotics Research, 20(7):
607-615, 2001.

Scott L Delp, Frank C Anderson, Allison S Arnold, Peter Loan, Ayman Habib, Chand T John,
Eran Guendelman, and Darryl G Thelen. Opensim: open-source software to create and
analyze dynamic simulations of movement. Biomedical Engineering, IEEE Transactions on,
54(11):1940-1950, 2007.

JM Donelan, Q Li, V Naing, JA Hoffer, D] Weber, and AD Kuo. Biomechanical energy harvesting:
generating electricity during walking with minimal user effort. Science, 319(5864):807-810,
2008.

Marco Dorigo and Mauro Birattari. Ant colony optimization. In Encyclopedia of Machine
Learning, pages 36-39. Springer, 2010.

Vincent Duchaine and Clement M Gosselin. General model of human-robot cooperation
using a novel velocity based variable impedance control. In EuroHaptics Conference, 2007
and Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems.
World Haptics 2007. Second Joint, pages 446-451. IEEE, 2007.

R.C. Eberhart and Y. Shi. Comparing inertia weights and constriction factors in particle swarm
optimization. In Proceedings of the 2000 Congress on Evolutionary Computation, volume 1,
pages 84 — 88, 2000.

G.I. Evers and M. Ben Ghalia. Regrouping particle swarm optimization: A new global optimiza-
tion algorithm with improved performance consistency across benchmarks. In Systems,
Man and Cybernetics, 2009. SMC 2009. IEEE International Conference on, pages 3901-3908,
2009.

Roy Featherstone. Rigid body dynamics algorithms, volume 49. Springer New York, 2008.

Dario Floreano, Francesco Mondada, Andres Perez-Uribe, and Daniel Roggen. Evolution of
embodied intelligence. In Embodied artificial intelligence, pages 293-311. Springer, 2004.

Frederick N Fritsch and Ralph E Carlson. Monotone piecewise cubic interpolation. SIAM
Journal on Numerical Analysis, 17(2):238-246, 1980.

192

Bibliography

H. Geyer and H. Herr. A muscle-reflex model that encodes principles of legged mechanics
produces human walking dynamics and muscle activities. Neural Systems and Rehabilitation
Engineering, IEEE Transactions on, 18(3):263-273, 2010.

David Edward Goldberg et al. Genetic algorithms in search, optimization, and machine learn-
ing, volume 412. Addison-wesley Reading Menlo Park, 1989.

Erico Guizzo and Harry Goldstein. The rise of the body bots [robotic exoskeletons]. Spectrum,
IEEE, 42(10):50-56, 2005.

Fumio Hara and Rolf Pfeifer. Morpho-functional Machines: The New Species: Designing Em-
bodied Intelligence. Springer, 2003.

Hugh Herr. Variable-mechanical-impedance artificial legs, April 1 2004. US Patent
20,040,064,195.

Kazuo Hirai, Masato Hirose, Yuji Haikawa, and Toru Takenaka. The development of honda
humanoid robot. In Robotics and Automation, 1998. Proceedings. 1998 IEEE International
Conference on, volume 2, pages 1321-1326. IEEE, 1998.

Masato Hirose and Kenichi Ogawa. Honda humanoid robots development. Philosophical
Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 365
(1850):11-19, 2007.

Gregory S Hornby, Hod Lipson, and Jordan B Pollack. Evolution of generative design systems
for modular physical robots. In Robotics and Automation, 2001. Proceedings 2001 ICRA. IEEE
International Conference on, volume 4, pages 4146-4151. IEEE, 2001.

Xiaohui Hu and Russell Eberhart. Multiobjective optimization using dynamic neighborhood
particle swarm optimization. In Computational Intelligence, Proceedings of the World on
Congress on, volume 2, pages 1677-1681. Ieee, 2002.

Qiang Huang, Kazuhito Yokoi, Shuuji Kajita, Kenji Kaneko, Hirohiko Arai, Noriho Koyachi, and
Kazuo Tanie. Planning walking patterns for a biped robot. Robotics and Automation, IEEE
Transactions on, 17(3):280-289, 2001.

Auke Jan [jspeert. Central pattern generators for locomotion control in animals and robots: a
review. Neural Networks, 21(4):642-653, 2008.

Ryojun Ikeura, Tomoki Moriguchi, and Kazuki Mizutani. Optimal variable impedance control
for a robot and its application to lifting an object with a human. In Robot and Human
Interactive Communication, 2002. Proceedings. 11th IEEE International Workshop on, pages
500-505. IEEE, 2002.

Shuuji Kajita, Fumio Kanehiro, Kenji Kaneko, Kiyoshi Fujiwara, Kensuke Harada, Kazuhito
Yokoi, and Hirohisa Hirukawa. Biped walking pattern generation by using preview control
of zero-moment point. In Robotics and Automation, 2003. Proceedings. ICRA03. IEEE
International Conference on, volume 2, pages 1620-1626. IEEE, 2003.

193

Bibliography

Dervis Karaboga and Bahriye Basturk. A powerful and efficient algorithm for numerical
function optimization: artificial bee colony (abc) algorithm. Journal of global optimization,
39(3):459-471, 2007.

H Kazerooni and R Steger. The berkeley lower extremity exoskeleton. Journal of dynamic
systems, measurement, and control, 128(1):14-25, 2006.

J. Kennedy and R. Eberhart. Particle swarm optimization. In "Proceedings of IEEE International
Conference on Neural Networks", volume 4, pages 1942-1948, 1995.

J. Kennedy and RC Eberhart. A discrete binary version of the particle swarm algorithm. In
IEEE International Conference On Systems Man And Cybernetics, volume 5, 1997.

Oussama Khatib. A unified approach for motion and force control of robot manipulators: The
operational space formulation. Robotics and Automation, IEEE Journal of, 3(1):43-53, 1987.

Jérémie Kniisel. Modeling a diversity of salamander motor behaviors with coupled abstract
oscillators and a robot. PhD thesis, STI, Lausanne, 2013.

John R Koza. Genetic programming: on the programming of computers by means of natural
selection, volume 1. MIT press, 1992.

Karl Kutzbach. Mechanische leitungsverzweigung, ihre gesetze und anwendungen. Maschi-
nenbau. Betrieb, 8:710-716, 1929.

Ken Larpin, Soha Pouya, Jesse van den Kieboom, and Auke Jan Ijspeert. Co-evolution of mor-
phology and control of virtual legged robots for a steering task. In Robotics and Biomimetics
(ROBIO), 2011 IEEE International Conference on, pages 2799-2804. IEEE, 2011.

NM Abdul Latiff, CC Tsimenidis, and BS Sharif. Performance comparison of optimization
algorithms for clustering in wireless sensor networks. In Mobile Adhoc and Sensor Systems,
2007. MASS 2007. IEEE Internatonal Conference on, pages 1-4. IEEE, 2007.

W-F Leong and Gary G Yen. Impact of tuning parameters on dynamic swarms in PSO-based
multiobjective optimization. In Evolutionary Computation, 2008. CEC 2008.(IEEE World
Congress on Computational Intelligence). IEEE Congress on, pages 1317-1324. IEEE, 2008.

A Lindenmayer. Mathematical models for cellular interactions in development. i. filaments
with one-sided inputs. Journal of Theoretical Biology, 18(3):280-299, mar 1968. PMID:
5659071.

Hod Lipson and Jordan B. Pollack. Automatic design and manufacture of robotic lifeforms.
Nature, 406:974-978, aug 2000.

Jason D Lohn, Gregory S Hornby, and Derek S Linden. An evolved antenna for deployment on
nasa’s space technology 5 mission. In Genetic Programming Theory and Practice II, pages
301-315. Springer, 2005.

194

Bibliography

R Timothy Marler and Jasbir S Arora. Survey of multi-objective optimization methods for
engineering. Structural and multidisciplinary optimization, 26(6):369-395, 2004.

Ernesto C Martinez-Villalpando and Hugh Herr. Agonist-antagonist active knee prosthesis: A
preliminary study in level-ground walking. J Rehabil Res Dev, 46(3):361-73, 2009.

Tad McGeer. Passive dynamic walking. the international journal of robotics research, 9(2):
62-82, 1990.

O. Michel. Webots: Professional mobile robot simulation. International Journal of Advanced
Robotic Systems, 1(1):39-42, 2004.

Kaisa Miettinen. Nonlinear multiobjective optimization, volume 12. Springer, 1999.

Rico Moeckel, Yura N Perov, Anh The Nguyen, Massimo Vespignani, Stephane Bonardi, Soha
Pouya, Alexander Sproewitz, Jesse van den Kieboom, Frederic Wilhelm, and Auke Jan Ijspeert.
Gait optimization for roombots modular robots—matching simulation and reality. In
Intelligent Robots and Systems (IROS), 2013 IEEE/RS] International Conference on, pages
3265-3272. IEEE, 2013.

Christopher K. Monson and Kevin D. Seppi. Adaptive diversity in PSO. In Proceedings of
the 8th annual conference on Genetic and evolutionary computation, pages 59-66, Seattle,
Washington, USA, 2006. ACM.

Ahmad Nickabadi, Mohammad Mehdi Ebadzadeh, and Reza Safabakhsh. DNPSO: a dynamic
niching particle swarm optimizer for multi-modal optimization. In Evolutionary Computa-
tion, 2008. CEC 2008.(IEEE World Congress on Computational Intelligence). IEEE Congress
on, pages 26-32. IEEE, 2008.

Lee Nolan. Carbon fibre prostheses and running in amputees: a review. Foot and ankle surgery,
14(3):125-129, 2008.

Chao Ou and Weixing Lin. Comparison between PSO and GA for parameters optimization of
PID controller. In Mechatronics and Automation, Proceedings of the 2006 IEEE International
Conference on, pages 2471-2475. IEEE, 2006.

Jong H Park and Kyoung D Kim. Biped robot walking using gravity-compensated inverted pen-
dulum mode and computed torque control. In Robotics and Automation, 1998. Proceedings.
1998 IEEE International Conference on, volume 4, pages 3528-3533. IEEE, 1998.

Jong Hyeon Park. Impedance control for biped robot locomotion. Robotics and Automation,
IEEE Transactions on, 17(6):870-882, 2001.

Konstantinos E Parsopoulos and Michael N Vrahatis. Particle swarm optimization method in
multiobjective problems. In Proceedings of the 2002 ACM symposium on Applied computing,
pages 603-607. ACM, 2002.

195

Bibliography

Chandana Paul and Josh C Bongard. The road less travelled: Morphology in the optimization of
biped robot locomotion. In Intelligent Robots and Systems, 2001. Proceedings. 2001 IEEE/RS]
International Conference on, volume 1, pages 226-232. IEEE, 2001.

Rolf Pfeifer, Max Lungarella, and Fumiya lida. Self-organization, embodiment, and biologically
inspired robotics. science, 318(5853):1088-1093, 2007.

Soha Pouya, Jesse van den Kieboom, A Sprowitz, and Auke Jan Ijspeert. Automatic gait
generation in modular robots: “to oscillate or to rotate; that is the question”. In Intelligent
Robots and Systems (IROS), 2010 IEEE/RS] International Conference on, pages 514-520. IEEE,
2010.

Jim Pugh and Alcherio Martinoli. Discrete multi-valued particle swarm optimization. In
Proceedings of IEEE swarm intelligence symposium, volume 1, pages 103-110, 2006.

Md Mozasser Rahman, Ryojun Ikeura, and Kazuki Mizutani. Investigation of the impedance
characteristic of human arm for development of robots to cooperate with humans. JSME
International Journal Series C, 45(2):510-518, 2002.

Tapabrata Ray and K. M. Liew. A swarm metaphor for multiobjective design optimization.
Engineering Optimization, 34(2):141, 2002.

Margarita Reyes-Sierra and CA Coello Coello. Multi-objective particle swarm optimizers: A
survey of the state-of-the-art. International journal of computational intelligence research,
2(3):287-308, 2006.

L. Righetti and A.]. Ijspeert. Programmable central pattern generators: an application to biped
locomotion control. In Proceedings of the 2006 IEEE International Conference on Robotics
and Automation, 2006.

R. Ronsse, N. Vitiello, T. Lenzi, J. van den Kieboom, M.C. Carrozza, and A.]. Ijspeert. Adaptive
oscillators with human-in-the-loop: Proof of concept for assistance and rehabilitation. In
Biomedical Robotics and Biomechatronics (BioRob), 2010 3rd IEEE RAS and EMBS Interna-
tional Conference on, pages 668—-674, Sept 2010.

R. Ronsse, B. Koopman, N. Vitiello, T. Lenzi, S. M M De Rossi, J. van den Kieboom, E. van
Asseldonk, M.C. Carrozza, H. van der Kooij, and A.]. Ijspeert. Oscillator-based walking assis-
tance: A model-free approach. In Rehabilitation Robotics (ICORR), 2011 IEEE International
Conference on, pages 1-6, June 2011a.

R. Ronsse, T. Lenzi, N. Vitiello, B. Koopman, E. Van Asseldonk, S.M.M. De Rossi, J. Van
Den Kieboom, H. Van Der Kooij, M.C. Carrozza, and A.]. Ijspeert. Oscillator-based as-
sistance of cyclical movements: model-based and model-free approaches. Medical and
Biological Engineering and Computing, pages 1-13, 2011b.

R. Ronsse, N. Vitiello, T. Lenzi, J. van den Kieboom, M.C. Carrozza, and A.]. Ijspeert. Human
- robot synchrony: Flexible assistance using adaptive oscillators. Biomedical Engineering,
IEEE Transactions on, 58(4):1001-1012, April 2011c.

196

Bibliography

Justinian P Rosca and Dana H Ballard. Discovery of subroutines in genetic programming,
chapter 9. The MIT Press, Cambridge, Massachusetts, 1996.

Jean-Claude Samin. Symbolic modeling of multibody systems, volume 112. Springer, 2003.

Andre Schiele and Frans CT van der Helm. Kinematic design to improve ergonomics in human
machine interaction. Neural Systems and Rehabilitation Engineering, IEEE Transactions on,
14(4):456-469, 2006.

Knut Schmidt-Nielsen. Locomotion: energy cost of swimming, flying, and running. Science,
177(4045):222-228, 1972.

Fabrizio Sergi, Dino Accoto, Nevio L Tagliamonte, Giorgio Carpino, and Eugenio Guglielmelli.
A systematic graph-based method for the kinematic synthesis of non-anthropomorphic
wearable robots for the lower limbs. Frontiers of Mechanical Engineering, 6(1):61-70, 2011.

A. Seyfarth, H. Geyer, M. Giinther, and R. Blickhan. A movement criterion for running. Journal
of Biomechanics, 35(5):649-655, 2002.

Y. Shi and R. Eberhart. A modified particle swarm optimizer. In The 1998 IEEE International
Conference on Evolutionary Computation, ICEC’98, pages 69-73, 1998.

K. Sims. Evolving 3d morphology and behavior by competition. In Artificial Life IV: Proceedings
of the Fourth International Workshop on the Synthesis and Simulation of Living Systems,
pages 28 — 39, 1994a.

Karl Sims. Evolving virtual creatures. In Proceedings of the 21st annual conference on Computer
graphics and interactive techniques, pages 15-22. ACM, 1994b.

Lee Spector, Howard Barnum, Herbert J Bernstein, Nikhil Swamy, ef al. Finding a better-than-
classical quantum and/or algorithm using genetic programming. In Proceedings of the
Congress on Evolutionary Computation, volume 3, pages 2239-2246, 1999.

Alexander Sproewitz, Aude Billard, Pierre Dillenbourg, and Auke Jan Ijspeert. Roombots-
mechanical design of self-reconfiguring modular robots for adaptive furniture. In Robotics
and Automation, 2009. ICRA'09. IEEE International Conference on, pages 4259-4264. IEEE,
2009.

Alexander Sprowitz, Soha Pouya, Stéphane Bonardi, Jesse Van den Kieboom, Rico Mockel,
Aude Billard, Pierre Dillenbourg, and Auke Jan Ijspeert. Roombots: reconfigurable robots for
adaptive furniture. Computational Intelligence Magazine, IEEE, 5(3):20-32, 2010.

Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based
control. In Intelligent Robots and Systems (IROS), 2012 IEEE/RS] International Conference on,
pages 5026-5033. IEEE, 2012.

197

Bibliography

Nikos G Tsagarakis, Stephen Morfey, Gustavo Medrano Cerda, Li Zhibin, and Darwin G Cald-
well. Compliant humanoid coman: Optimal joint stiffness tuning for modal frequency
control. In Robotics and Automation (ICRA), 2013 IEEE International Conference on, pages
673-678. IEEE, 2013.

E van den Bergh and A.P. Engelbrecht. A cooperative approach to particle swarm optimization.
Evolutionary Computation, IEEE Transactions on, 8(3):225-239, 2004.

Antonie J van den Bogert. Exotendons for assistance of human locomotion. BioMedical
Engineering OnLine, 2:17, 2003. PMC270067.

Jesse van den Kieboom and Auke Jan Ijspeert. Exploiting Natural Dynamics in Biped Lo-
comotion using Variable Impedance Control. In IEEE Conference on Humanoids Robots,
2013.

Jesse van den Kieboom, Soha Pouya, and Auke Jan Ijspeert. Meta morphic particle swarm
optimization. In Nature Inspired Cooperative Strategies for Optimization (NICSO 2013),
pages 231-244. Springer, 2013.

Miomir Vukobratovi¢ and Branislav Borovac. Zero-moment point—thirty five years of its life.
International Journal of Humanoid Robotics, 1(01):157-173, 2004.

Miomir Vukobratovic and Davor Juricic. Contribution to the synthesis of biped gait. Biomedical
Engineering, IEEE Transactions on, (1):1-6, 1969.

Conor James Walsh, Kenneth Pasch, and H Herr. An autonomous, underactuated exoskeleton
for load-carrying augmentation. In Intelligent Robots and Systems, 2006 IEEE/RS] Interna-
tional Conference on, pages 1410-1415. IEEE, 2006.

Conor James Walsh, Ken Endo, and Hugh Herr. A quasi-passive leg exoskeleton for load-
carrying augmentation. International Journal of Humanoid Robotics, 4(03):487-506, 2007.

Jack M Wang, Samuel R Hamner, Scott L Delp, and Vladlen Koltun. Optimizing locomotion
controllers using biologically-based actuators and objectives. ACM Transactions on Graphics
(TOG), 31(4):25, 2012.

David A Winter. Biomechanics and motor control of human movement. John Wiley & Sons,
2009.

M Wisse, AL Schwab, and RQ vd Linde. A 3d passive dynamic biped with yaw and roll compen-
sation. Robotica, 19(3):275-284, 2001.

Martijn Wisse. Essentials of dynamic walking; analysis and design of two-legged robots. 2004.

Martijn Wisse. Three additions to passive dynamic walking: actuation, an upper body, and 3d
stability. International Journal of Humanoid Robotics, 2(04):459-478, 2005.

198

Bibliography

Chukiat Worasucheep. A particle swarm optimization with stagnation detection and disper-
sion. In Evolutionary Computation, 2008. CEC 2008.(IEEE World Congress on Computational
Intelligence). IEEE Congress on, pages 424-429. IEEE, 2008.

Kemin Zhou, John Comstock Doyle, Keith Glover, et al. Robust and optimal control, volume
272. Prentice Hall New Jersey, 1996.

199

Curriculum Vitae

Jesse van den Kieboom
Born 26 June 1984, Breda, The Netherlands

Email: jessevdk@amail.com

Experience

Swiss Federal Institute of Technology (EPFL), Lausanne, Suisse 2009 - 2014
Biorobotics Laboratory

Phd thesis on the dynamics of human locomotion and co-design
of lower limb assistive devices.

Rijksuniversiteit Groningen (RUG), Groningen, The Netherlands 2005
Member of the winning team of the Dutch RoboChallenge 2005,

a mobile robot competition with a self-designed, manufactured and
controlled robotic platform.

Education

Swiss Federal Institute of Technology (EPFL), Lausanne, Suisse
PhD student in the Biorobotics laboratory 2009 - 2014

Master thesis at the Biorobotics laboratory 2008 - 2009
Biped Locomotion and Stabilization - A Practical Approach

Rijksuniversiteit Groningen (RUG), Groningen, The Netherlands

Bachelor in Artificial Intelligence 2003 - 2006
Master of science in Artificial Intelligence 2007 - 2009

201

Journal publications

Ronsse, R. & Lenzi, T. & Vitiello, N. & Koopman, B. & Van Van Asseldonk, E. &
Rossi, S.M.M. & Den Kieboom, J. & Van Kooij, H. & Carrozza, M.C. & ljspeert, A.J.
(2011). Oscillator-based assistance of cyclical movements: model-based and model-free
approaches. Medical and Biological Engineering and Computing, 1—13.

Ajallooeian, M. & van Kieboom, J. & Mukovskiy, A. & Giese, M. A. & ljspeert, A. J.
(2013). A general family of morphed nonlinear phase oscillators with arbitrary limit cycle
shape. Physica D: Nonlinear Phenomena,263, 41—56.

Conference publications
Pouya, S. & van Kieboom, J. & Sprowitz, A. & ljspeert, A. J. (2010). Automatic gait

generation in modular robots:“to oscillate or to rotate; that is the question”. Intelligent
Robots and Systems (IROS), 2010 IEEE/RSJ International Conference on, 514—520.

Ronsse, R. & Vitiello, N. & Lenzi, T. & van Kieboom, J. & Carrozza, M.C. & ljspeert,
A.J. (2010). Adaptive oscillators with human-in-the-loop: Proof of concept for assistance
and rehabilitation. Biomedical Robotics and Biomechatronics (BioRob), 2010 3rd IEEE
RAS and EMBS International Conference on, 668-674.

Larpin, K. & Pouya, S. & van Kieboom, J. & ljspeert, A. J. (2011). Co-evolution of
morphology and control of virtual legged robots for a steering task. Robotics and
Biomimetics (ROBIO), 2011 IEEE International Conference on, 2799—2804.

Ronsse, R. & Koopman, B. & Vitiello, N. & Lenzi, T. & De De Rossi, S. M M & van
Kieboom, J. & Asseldonk, E. & Carrozza, M.C. & van Kooij, H. & ljspeert, A.J.
(2011). Oscillator-based walking assistance: A model-free approach. Rehabilitation
Robotics (ICORR), 2011 IEEE International Conference on, 1-6.

Ronsse, R. & Vitiello, N. & Lenzi, T. & van Kieboom, J. & Carrozza, M.C. & ljspeert,

A.J. (2011). Human - Robot Synchrony: Flexible Assistance Using Adaptive Oscillators.
Biomedical Engineering, IEEE Transactions on,58,1001-1012.

202

van Kieboom, J. & Pouya, S. & ljspeert, A. J. (2013). Meta Morphic Particle Swarm
Optimization. Nature Inspired Cooperative Strategies for Optimization (NICSO 2013),
231—244.

Gay, S. & van Kieboom, J. & Santos-Victor, J. & ljspeert, A. (2013). Model-Based and
Model-Free Approaches for Postural Control of a Compliant Humanoid Robot using
Optical Flow. IEEE Conference on Humanoids Robots.

van Kieboom, J. & ljspeert, A. J. (2013). Exploiting Natural Dynamics in Biped
Locomotion using Variable Impedance Control. IEEE Conference on Humanoids Robots.

Moeckel, R. & Perov, Y. N. & Nguyen, A. T. & Vespignani, M. & Bonardi, S. & Pouya,
S. & Sproewitz, A. & van Kieboom, J. & Wilhelm, F. & ljspeert, A. J. (2013). Gait
optimization for roombots modular robots—Matching simulation and reality. /Intelligent
Robots and Systems (IROS), 2013 IEEE/RSJ International Conference on, 3265—3272.

Magazine publications

Sprowitz, A. & Pouya, S. & Bonardi, S. & van Kieboom, J. & Mockel, R. & Billard, A.
& Dillenbourg, P. & ljspeert, A. J. (2010). Roombots: reconfigurable robots for adaptive
furniture. Computational Intelligence Magazine, IEEE,5, 20—32.

203

	Acknowledgements
	Abstract
	List of figures
	List of tables
	List of models
	Introduction
	Co-design of human assistive devices
	Human locomotion
	Tools
	Organization of the thesis

	I Dynamics and optimization
	Dynamics
	cȯdγn, coupled dynamics
	Core concepts
	Nodes and edges
	Mathematical language
	Edge projections
	Events
	Numerical integration

	Modeling language
	Variables and simple differential equations
	Nodes
	Edges
	Generators and selectors
	Templates
	Integrator
	Events

	Example I: Central pattern generators
	Van der Pol
	Matsuoka
	Morphed nonlinear phase oscillator

	Example II: SLIP model
	Rigid body dynamics
	Existing simulators
	Deriving equations of motion
	Spatial vector algebra
	Joint models
	Model definition
	Inverse dynamics
	Forward dynamics
	Jacobian
	Closed loop dynamics
	Contact modeling
	Visualization

	Performance
	libcodyn
	The road towards performance
	As raw as C
	Performance comparison

	Tools
	Command line tools
	Graphical designer interface
	Supported languages

	Availability
	Conclusion

	Optimization
	Population-based methods
	Genetic Algorithms
	Genetic Programming
	Particle swarm optimization

	Metamorphic particle swarm optimization
	Metamorphic PSO Algorithm
	Properties
	Applications
	Discussion

	Multi objective particle swarm optimization
	Multi objective optimization
	Multi objective PSO using lexicographic ordering

	Large scale population-based optimization
	Conceptual overview
	User layer
	Server layer
	Workstation layer
	Results and analysis
	Availability
	In the wild

	Conclusion

	II Human locomotion and assistance
	Optimization of natural human gait
	Human gait optimization
	Model
	Optimization
	Results
	Discussion

	CoMan humanoid robot gait optimization
	CoMan humanoid robot platform
	Modeling the CoMan robot
	Study I: CoMan gait optimization
	Study II: The effect of impedance control during perturbations

	Conclusion

	Co-design of human assistive devices
	Initial study
	Design
	Topologies and morphologies
	Actuator placement
	Singularities
	Summary

	Modeling
	Augmented human model
	Closing joint actuation
	Constraint forces in closed loop systems
	Control

	Optimization
	Algorithm
	Parameterization
	Objectives
	Singularities

	Results
	Discussion

	Conclusion
	Models
	Complementary figures
	Bibliography
	Curriculum Vitae

