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Abstract
Recent developments in lower extremities wearable robotic devices for the assistance and

rehabilitation of humans suffering from an impairment have led to several successes in the

assistance of people who as a result regained a certain form of locomotive capability. Such

devices are conventionally designed to be anthropomorphic. They follow the morphology

of the human lower limbs. It has been shown previously that non-anthropomorphic designs

can lead to increased comfort and better dynamical properties due to the fact that there is

more morphological freedom in the design parameters of such a device. At the same time,

exploitation of this freedom is not always intuitive and can be difficult to incorporate. In this

work we strive towards a methodology aiding in the design of possible non-anthropomorphic

structures for the task of human locomotion assistance by means of simulation and optimiza-

tion. The simulation of such systems requires state of the art rigid body dynamics, contact

dynamics and, importantly, closed loop dynamics. Through the course of our work, we first

develop a novel, open and freely available, state of the art framework for the modeling and

simulation of general coupled dynamical systems and show how such a framework enables

the modeling of systems in a novel way. The resultant simulation environment is suitable for

the evaluation of structural designs, with a specific focus on locomotion and wearable robots.

To enable open-ended co-design of morphology and control, we employ population-based

optimization methods to develop a novel Particle Swarm Optimization derivative specifically

designed for the simultaneous optimization of solution structures (such as mechanical de-

signs) as well as their continuous parameters. The optimizations that we aim to perform

require large numbers of simulations to accommodate them and we develop another open

and general framework to aid in large scale, population based optimizations in multi-user

environments. Using the developed tools, we first explore the occurrence and underlying

principles of natural human gait and apply our findings to the optimization of a bipedal gait of

a humanoid robotic platform. Finally, we apply our developed methods to the co-design of a

non-anthropomorphic, lower extremities, wearable robot in simulation, leading to an iterative

co-design methodology aiding in the exploration of otherwise hard to realize morphological

designs.

Keywords : dynamical systems, rigid body dynamics, bipedal locomotion, natural gait, robotics,

optimization, impedance control, wearable robot co-design, morphology
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Résumé
Les récents développements de dispositifs robotiques portables pour les membres inférieurs,

utilisés pour l’assistance ainsi que pour la réhabilitation de personnes souffrant de détério-

ration des fonctions motrices, a permis la récupération de certaines capacités locomotrices.

Ces dispositifs sont conventionnellement conçus pour être anthropomorphique, et suivent la

morphologie des membres inférieures humains. Il a cependant été montré que des modèles

non-anthropomorphiques, permettant plus de liberté quant au choix de conception et du

nombre de paramètres, pourraient offrir un meilleur confort et de meilleures propriétés dy-

namiques. Cependant gérer et exploiter cette liberté de conception n’est pas intuitive et peut

être difficile à gérer. Dans cette étude, nous présentons une méthodologie basée sur des simu-

lations physiques combinées à des optimisations mathématiques pouvant aider la conception

de structures robotiques non-anthropomorphiques dédiées à l’assistance de la marche hu-

maine. La simulation de ces structures nécessite l’utilisation des avancées les plus récentes en

dynamique des corps rigides, des contacts physiques ainsi que des systèmes rétroactifs. Nous

avons tout d’abord développé un nouvel outil, ouvert et disponible gratuitement, permettant

la modélisation et la simulation des systèmes dynamiques couplées, et proposant une nouvelle

manière de modéliser ces systèmes. L’environnement de simulation résultant peut être utilisé

pour l’évaluation de conceptions structurelles, en particulier dans le cadre de la marche et les

dispositifs robotiques portables. Pour permettre une conception mixte de la morphologie et

du contrôle, nous avons développé un nouveau dérivé de l’optimisation par essaims particu-

laires, spécifiquement conçu pour l’optimisation simultanée de structures (par exemple une

structure mécanique), ainsi que les paramètres continus associés. L’optimisation que nous

souhaitons réaliser requérant un grand nombre de simulation, nous avons donc développé

un autre outil ouvert et accessible librement, permettant le déploiement d’optimisation à

grande échelle dans un environnement multi-utilisateurs. En utilisant les outils développés,

nous avons ensuite exploré les principes fondamentaux de la marche humaine et appliqué

nos découvertes à l’optimisation d’une démarche bipède d’un robot humanoïde. Enfin, nous

avons combinées les méthodes et outils développés pour le co-design, et les avons appliqués

à la simulation d’un dispositif robotique non-anthropomorphique des membres inférieures

humains. Cette démarche a conduit à une méthodologie de co-design itérative permettant

l’exploration de concepts morphologiques autrement difficile à réaliser.

Mots clefs : systèmes dynamique, la dynamique des corps rigides, marche bipède, démarche

naturelle, robotique, optimisation, contrôle en impédance, co-design de dispositif robotique
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1 Introduction

“If we knew what it was we were doing, it would not be called research, would it?” — Albert

Einstein. Taken with a little smile, I personally like this expression of what it means to do

research or science in general. It is of course not that we have absolutely no idea what we are

doing, but it is true that we often do not know exactly where it will lead us. Exploration and

discovery, challenging the status quo is at the very heart of the motivations of so many people

in the world contributing to the sciences.

Scientific contributions are made in many different ways, but what they have in common

is that they seek to further human knowledge and understanding of the universe. Science

is in the service of society and... My apologies, I believe I let my thoughts drift there for a

moment. Just like the work presented in this thesis, many scientific contributions, apart from

the occasional real geniuses, are not of mind-boggling, society altering nature. Still, I want

to believe that, even if ever so small, contributions can be made that serve the betterment of

society in general and exploring new avenues in the process.

My own journey, written here to be read, began with an interest in the application of computer

science to the human sciences, with a particular interest in human locomotion. Having a

background in Artificial Intelligence rooted in social sciences rather than the usual computer

sciences, I am especially interested in computer aided design methodologies based on natural

processes, and apply those to the design of wearable devices for the support of the less able.

1.1 Co-design of human assistive devices

Towards this end, and as part of the European funded EVRYON project, we start by looking at a

novel design methodology for the development of a lower extremities wearable robot designed

for the support of human walking. To the best of our knowledge, all recently developed

exoskeletons, whether for human performance augmentation or assistance/rehabilitation

purposes, follow an anthropomorphic design, i.e. following the morphology of human limbs.

This is certainly the more intuitive choice, since 1) the mechanical design is already known

1
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beforehand (although of course also not trivial to realize), and 2) an anthropomorphic device

is more socially acceptable. On the other hand, non-anthropomorphic designs have possible

advantages as well. For example, by allowing additional kinematic freedom, it is possible

to increase user comfort (Schiele and van der Helm, 2006) by avoiding macro- or micro-

misalignments with human joints, which behave more complexly than a single degree of

freedom. Allowing more freedom in the mechanical design by avoiding anthropomorphicity

also has the potential of a device which has improved or more finely tuned dynamic properties

when considering the human body and the wearable robot together. We will discuss existing

wearable devices for locomotion assistance in more detail in chapter 5.

Although the possibility of a non-anthropomorphic design is an interesting one, it is also more

difficult to have a good intuition for what such a design should look like. In the early work of

Sims (1994b,a) it was shown that by using artificial evolutionary processes, the morphology of

(relatively simple) creatures could be evolved to accomplish various tasks, such as walking,

jumping and swimming. The resulting morphologies gave insight into the role of the body in

interaction with the environment aiding to solve these tasks. These insights may be intuitive in

hindsight, but they are not necessarily so beforehand. Other seminal work in the exploration

of morphology is presented in (Lipson and Pollack, 2000) where robotic lifeforms were not

only designed in an automated fashion, but also manufactured. In Paul and Bongard (2001) it

was shown that similar principles could aid in the design of a biped walker where morphology

was adapted to show an increase in performance.

The idea that the body, and not just the control, is an important property of a system is cap-

tured by the concept of Embodied Intelligence. Rooted in philosophy, but applied to robotics

and artificial life forms in general (Brooks, 1992; Pfeifer et al., 2007) it states that artificial

intelligence can exist only through an embodied agent interacting with its environment. I.e.

part of what we consider intelligent behavior is caused by the body, rather than the mind

(or control). It is easy to see how in nature, the body plays a large role. It is after all the only

instrument through which it is possible to interact with the environment. Not only does this

idea transcend to the design of robots (Hara and Pfeifer, 2003), it also becomes relevant when

looking at adaptation of behavior due to unexpected changes in morphology as shown in

Bongard et al. (2006).

Evolutionary algorithms provide an interesting approach to the goal of embodied design since

they allow for very open-ended specifications of the problem domain, therefore promoting

the possibility of discovery of novel designs (Floreano et al., 2004). Here we seek to use these

type of evolutionary processes for the co-design of a non-anthropomorphic wearable robot

designed for the task of human locomotion assistance. We therefore do not only try to optimize

the control of such a device, but its morphology (i.e. mechanical structure) and actuator

placement as well. We look specifically at the development of a methodology grounded in

an iterative design principle. Rarely are evolutionary algorithms used for the development of

a final and completely finished product, nor do they allow for incorporation of all possible

design parameters. Instead, found solutions give insights in possible designs which have to be
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further refined afterwards. To this end, we look at developing a methodology which allows for

easily (re)optimizing such refinements iteratively.

1.2 Human locomotion

The co-design of a wearable device for human locomotion assistance cannot be done without

looking first at the dynamics of human locomotion itself. Human locomotion is a well studied

subject and of particular interest is the early work done on passive dynamic walkers (McGeer,

1990). Here it is shown that much of the dynamics of walking can be prescribed to the mechan-

ics, instead of actuation or control. This idea is very much in line with the idea of embodied

intelligence since it turns out that the human body, although not entirely passive of course,

is particularly well suited for the task of locomotion. Passive dynamic walkers are however

also very unstable (at least the ones that are purely passive). The slightest disturbance could

destabilize the system and make the walker fall over easily. A wearable device in many ways

can be seen as a disturbance to the human body and it would therefore make sense to try and

optimize not only the control of a wearable device but also its structure such as to find new

optimal locomotion modes, such that disturbances are minimized.

Since open-ended optimization is a complex task, especially when looking at optimizing

for stable bipedal gaits, we first seek to verify our methodology on normal, un-augmented

human walking. We are interested in the minimal conditions for the emergence of human

gait by optimizing high-level objectives only, and look at the application of population-based

optimization strategies towards this goal. If we manage to do so, then within reasonable

assumptions, we can try and apply the same methodology to the co-design of a wearable robot.

To validate the importance of morphological design for the emergence of natural gait we also

look at applying the exact same methodology to a model of a humanoid robotic platform and

see that it is important to not only mimic natural systems, but take dynamical properties of

such a system into account during its design.

1.3 Tools

In the process of developing the necessary tools for doing the research as described in the

previous paragraphs, we realized that the available scientific tools needed for our approach

were not readily available. We firmly believe that one of the core values of scientific work lies

in the fact that research should be open, freely available to everyone and anyone, and readily

reproducible. We realized after our initial studies that this would not be easily possible with

available simulation software. Furthermore, we found that most existing software was not

adequate for the use of morphological design of our specific needs.

In particular, we look at advancing the state of the art in two areas of interest, by providing

ready to be used, open, and freely distributed frameworks specifically designed for the research

presented in this thesis. The first area of interest is that of general purpose, unified coupled
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dynamical systems modeling, including rigid body dynamics. Specifically when looking at the

simulation of 1) complex rigid body systems, such as parallel structures, 2) contact models

suitable for locomotion and 3) simulations targeting design principles, we found none of the

existing solutions suitable for all of our criteria. We are not the only ones that have shown a

recent interest in the scientific community for the availability of such simulation software and

we believe that with the work presented in this thesis we make a valuable contribution. To the

best of our knowledge, we present here the first freely available and open implementation

of a novel dynamical system simulation environment with a strong focus on openness, ex-

pressiveness, modeling, performance and education. We focus specifically on the modeling

and simulation of coupled dynamics, whether coupled oscillator systems (or central pattern

generators) , rigid body dynamics or other types of dynamics.

The modeling of rigid body dynamics is certainly not a new problem. There are generally

speaking two methods for deriving the dynamical equations that govern rigid body systems.

Simulators such as ODE, Bullet or Box2D are open and freely available simulators which

initially consider all physical bodies to be unconstrained and then explicitly add constraints to

the individual body equations of motion. This method is popular in these engines, which target

games and movie production, since it leads to physically believable and relatively fast forward

simulations. They are however inadequate when used for research purposes, in particular

when looking at design. The reason is that all of these simulators aim at physically realistic

simulations, but not necessarily accurate ones, often trading accuracy for speed of simulation.

They also do not derive equations of motion in a form useful for model-based control, deriving

interaction forces, accurate contact modeling or system analysis.

On the other end of the spectrum are simulators which actually derive the system’s equations

of motion, whether symbolically or numerically, in its entirety by projecting the dynamics

into generalized coordinates. This has many advantages, in particular for research purposes

since analysis can be done on the system when all quantities of the equations of motion

are known. Furthermore, the resulting dynamics are physically more accurate and useful

quantities for design of systems. For example accurate interaction forces are readily available.

The derivation of the equations of motion is a well studied subject and an outstanding and

detailed explanation of it can be found in Featherstone (2008). Few implementations however

are available at present. Of those, including simulators such as Robotran or OpenSim, none

provide 1) ease of modeling, 2) support for sophisticated contact modeling, 3) closed loop

dynamics, 4) performance and 5) easy extensibility. Additionally, recent developments such

as MuJoCo (Todorov et al., 2012), which take a similar approach, are of great interest but

unfortunately as of yet are unavailable. Not only do we aim at providing a state of the art

implementation of the derivation of the equations of motion of rigid body systems as detailed

in Featherstone (2008), we importantly do so in a manner which makes modeling pleasant

and unified with other types of dynamical systems.

The second area of interest is that of large scale, population-based optimization. Although not

necessarily novel, we develop a framework which allows for the managed execution of multi-
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user, large scale population based optimizations. Furthermore, the framework is agnostic

in terms of optimization algorithm or task execution and can be used for general purpose

task distribution. Several optimization algorithms including basic Genetic Algorithms and

Particle Swarm Optimization are provided, as well as several common task dispatchers such

as simulation in the Webots (Michel, 2004) simulator or Matlab. We understand that the

scientific value of such a framework is limited, however it has been of integral importance as

an application to many of the research performed in our laboratory and in particular to the

work presented in this thesis. We also believe that as such it has potentially great value for the

scientific community.

1.4 Organization of the thesis

The remainder of this thesis is divided into two parts. In the first part we develop tools,

frameworks and algorithms for the modeling and simulation of coupled dynamical systems

and look at the use of population based, large scale optimization specifically for use in robotics.

In chapter 2 we first contribute a state of the art, open and freely available framework for the

modeling of coupled dynamical systems, with a specific focus on central pattern generators

and rigid body dynamics. We develop a novel declarative modeling language in which coupled

dynamics can be naturally and uniformly described, allowing integration of multi-domain

dynamical systems. Using this language, a modern and competitive rigid body dynamics

simulator is implemented based on Featherstone (2008), including declarative system model-

ing, custom joint models, soft and hard contact models, inverse- and forward-dynamics and

modeling of closed loop systems. Finally, optimized, low-level code is automatically generated

from the high-level model description with a special focus on running on Real-Time and/or

embedded systems, even micro-controllers.

We then continue to chapter 3, where we briefly discuss population based optimization

methods and develop a novel Particle Swarm Optimization (Kennedy and Eberhart, 1995)

based algorithm for the simultaneous optimization of solution structure and its corresponding

continuous parameters. This allows for the optimization of the type of problems which have a

known set of possible solution structures each with a set of, possibly overlapping, continuous

parameters. Finally, we present another open and free to use framework for performing large

scale optimizations in multi-user environments, particularly suited for population based

optimizations.

In the second part of this thesis we use these tools to study the co-design of a non-anthropomorphic,

lower extremities, wearable robot for human locomotion assistance. Because natural human

gait lies at the core of human locomotion assistance, before we dive into the co-design, we first

explore in chapter 4 the use of population based optimization methods and impedance control

to (re)discover natural human gait from first principle objectives only. We show that global

gait characteristics, such as heel-strike, toe-off and stance/swing duration, and stable walking

are obtained by optimization for forward locomotion and energy efficiency only, and look at
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the role of impedance control to do so. The same method is then used to optimize a human

like gait (in simulation) for the CoMan compliant humanoid robot (Tsagarakis et al., 2013) by

looking a the optimization of mechanical cost of transport. Here we show by comparison with

our previous study on a normal human sized model, that the morphology (and not only the

biomimeticity) of a humanoid robot plays an important role in its design. Finally, the role of

impedance control in locomotion while under the influence of perturbations is studied using

these same methods.

In chapter 5, we investigate the use of population based optimization algorithms for the co-

design of a wearable robot suitable for human locomotion assistance. We look at optimization

of the morphology of the human augmenting robot to assist locomotion using a semi open-

ended explorative search with the algorithm developed in chapter 3. Together with the tools

developed in chapter 2 we provide a comprehensive framework for the future exploration of

iterative design methods for non-anthropomorphic wearable robots.

The contributions made in the course of this thesis are the following:

1. A state of the art framework for the modeling and simulation of coupled dynamical

systems using a novel design methodology for model construction allowing for the

construction of complex and parametrized systems. Using a unified approach for the

modeling of dynamics, multiple dynamical domains can be modeled in the same way. In

particular, we focus on the modeling of 1) oscillators and central pattern generators and

2) rigid body dynamics. Special attention is paid to the simulation of dynamical systems

suitable for Real Time and embedded systems as well as micro-controllers, without the

loss of expressiveness or generality.

2. A novel Particle Swarm Optimization based optimization algorithm for the simultaneous

optimization of structural parameter configuration spaces and their corresponding

(possibly overlapping) continuous parameters. The resulting algorithm is suitable for

optimization problems in which the possible set of solution structures is known (or can

be enumerated) but is to be explored using cooperative strategies similar to those of a

normal Particle Swarm Optimization.

3. A framework for performing task and task execution agnostic, large-scale, population-

based optimization in a multi-user environment. Combined with the framework for

modeling of coupled dynamics, the two frameworks provide a methodology for the

optimization of various robotics problems, of which we present two in particular.

4. A method for the optimization of natural human gait using impedance control from

high-level objectives (such as uprightness, walking at a desired speed and minimization

of energy). The proposed method leads to the automatic recovery of global human

gait characteristics, such as swing/stance duration and heel-strike, foot-roll and toe-

off without explicitly optimizing for it. Furthermore, using the same methodology, we

show the importance of morphological design by optimizing for natural gait of a hu-

manoid robotic platform, and explore the role of impedance control further under the
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application of perturbations and rejection of its disturbances.

5. Finally, we combine all of the above developed methods for the design of an iterative

methodology and employ the resulting system for the co-design of the morphology

and control of a wearable robot for the purpose of human locomotion assistance.

We show the viability of such a methodology and provide insight in possible non-

anthropomorphic design principles.

We conclude the work presented in chapter 6.
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2 Dynamics

Dynamics are everywhere, and quite literally so! Merriam-Webster defines dynamics as “a

pattern or process of change, growth, or activity”. In a sense, a dynamical system can be defined

as a system that is subject to change over time. Obviously, this is a very general definition that

is generally true for most systems (at least the interesting ones). From a mathematical point of

view, a dynamical system is simply any fixed set of rules which describe the time dependence

of the position of a point in a space.

This chapter surveys the simulation of a particular set of dynamical systems, namely those

systems described by Ordinary Differential Equations (or ODE’s). When we originally set out,

we found that existing software for working with these type of systems, although providing

great tools for some of its aspects, would on the other hand sorely lack other important

features, such as ease of modeling, good performance, availability and model parametrization.

Of course, all major scientific computing software packages such as Matlab or Mathematica

allow you to write down the differential equations that govern a particular system and (for

example) numerically integrate them. This however is not where great software assisted design

of dynamical systems should end.

A well designed software framework would allow you to write differential equations in their

pure mathematical form and couple isolated systems together as a first class construct. It

would allow you to define your system in a structural and maintainable way while visualizing,

analyzing and numerically integrating them. It would then allow you to take your high-level,

structurally and mathematically sound system and automatically transform it into an efficient

representation suitable for running on constrained embedded and/or real time hardware

(with a particular focus on robotics systems). It would also provide a multitude of tools for

graphically designing simple systems (great for educational purposes), and bind to various

existing programming languages with minimal effort.

Dramatism aside, cȯdγn is a software framework that features all of the above, and more. In

many ways, it has been the cornerstone of this thesis and deserves to be its first chapter after

the introduction. In the remainder of this chapter we go through its major design aspects,
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various implementation details and give a number of examples of systems which are ideally

suited for representation and simulation in cȯdγn.

2.1 cȯdγn, coupled dynamics

cȯdγn (Coupled Dynamics) is the umbrella name for the framework of various software

libraries and tools specifically designed to address issues with existing frameworks to design

and simulate coupled dynamical systems. The core motivations that drove the design for such

a framework are the following:

1. Free/Open: The most popular available scientific tools which do well at dynamical system

modeling are proprietary. Open alternatives such as Octave, or more recently Julia are

available but lack libraries, toolboxes and communities to make them real alternatives

in many cases. Scientific advancement is an open endeavor at its very core and its tools

should therefore also be available in the open, free (as in freedom) for anyone to inspect

and modify. Even if personally a strong proponent of free/open software, proprietary

software is not only problematic from an ideological standpoint. There has been a

recent push towards explicitly producing free and open software as a product of scientific

projects (as a European policy) for a good reason. Open software can be reused, modified,

improved and scientific work done with them easily reproduced without requiring an

expensive license. Although there are free alternatives for tools such as Matlab and

Mathematica (for example Octave or Maxima) they are not specifically tailored towards

simulations of dynamical systems and do not meet our other motivations.

2. Domain specific: Domain specific languages (or DSLs) are languages specifically de-

signed to fit a particular domain. They are popular because they can be made such that

their problem domain can be represented in the best suitable way. This is in contrast to

general purpose languages which have to cover general computational requirements.

3. Expressive: Users should be able to express a dynamical systems model in a concise

manner, without losing flexibility in general. Existing software frameworks do not pro-

vide specific constructs to express complex dynamical systems in a short and easily

understood way.

4. Performance: There is often a trade off to be made between 1) expressiveness/flexibility,

2) ease of use and 3) performance. It is relatively easy to create a system which features

two of these characteristics, but when a framework is focused on the first two charac-

teristics performance is often lacking. cȯdγn aims to provide good performance while

preserving expressiveness and ease of use.

5. Educational: cȯdγn was not only created as a research tool but also as a tool for educa-

tional purposes. It provides various utilities which make it easy to explore and interact

with dynamical systems. Although cȯdγn has not been used as course material, we

have used it to introduce modeling and simulation of coupled dynamical systems for

semester and master projects where it provided a great learning experience through
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experimentation.

The next sections will first go over the conceptual design principles of modeling in cȯdγn

and the specially developed language which implements this design. Then two realizations of

coupled dynamical systems, central pattern generators and rigid body dynamics are discussed

within the developed framework. Finally details on performance, tools and examples are

provided.

cȯdγn is available at http://www.codyn.net/. The website contains all information related

to cȯdγn, including documentation, manuals, examples, downloads and sources. All of the

cȯdγn software is released under the LGPL (for libcodyn) and GPL free software licenses.

2.2 Core concepts

cȯdγn is specifically designed to ease the modeling of coupled dynamical systems. We focus

only on systems which can be represented by sets of ordinary differential equations. Although

partial differential equations underlie many naturally occurring dynamical systems as well,

cȯdγn currently does not support their modeling. Coupled dynamical systems are systems

which can usually be designed as a number of independent, isolated systems plus their inter-

coupling. Often, these couplings can be represented as additive terms in the differential

equations of the separated systems. This leads to a natural representation of these systems

as a layered directed graph, which is one of the core foundations of the cȯdγn framework. It

should be noted that cȯdγn only supports additive coupling naturally. Other types of coupling,

such as multiplicative coupling involving several emitters, can still be used, but not without

working against cȯdγn’s main concepts.

This section briefly introduces the core concepts and principles upon which the cȯdγn frame-

work is built.

2.2.1 Nodes and edges

cȯdγn has been designed around concepts which give an intuitive notion to building coupled

dynamics system. In cȯdγn, a coupled dynamical system is called a network. The network

term arises from the fact that in cȯdγn, dynamical systems are modeled using nodes and edges,

which are structurally organized as a network (or graph) of connected components.

A node in cȯdγn is simply an object containing variables. There are several types of variables

with different semantics. A state variable is a variable with an associated differential equation

which can be numerically integrated over time. A discrete variable is similar to a state variable,

except that it describes the discrete-time system (map) differential equations instead of a

continuous integral. Finally, there are normal variables which can be used to define reusable

(sub)expressions or parameters.
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An edge connects two nodes and defines a coupling of variables between nodes. For state

variables, an edge defines a (part of a) differential equation of the state variable. Edges can

reference variables from both input and output nodes and a single edge can define differential

equations for more than one variable.

It is important (conceptually) to realize that all differential equations in cȯdγn are imple-

mented using edges. To make writing differential equations which only access states and

variables from the same node more convenient, each node also contains a so-called self-edge.

The self-edge is basically an edge with its input and output set to the node it is contained

within.

To allow composability and modularity, nodes can themselves contain other nodes and edges.

By these means, subsystems can be easily constructed and interconnected. The network itself,

then, simply becomes the top level node containing top level variables and other child nodes

and edges.

Consider for example the following simple system of coupled differential equations:

ẋ1 =−1+ (x2 −x1) (2.1)

ẋ2 = 1+ (x1 −x2), (2.2)

with initial conditions x1 = 1, x2 = 0. This system can be represented naturally in cȯdγn by

separating the coupling terms from the “main” differential equations for each variable:

ẋ1 =−1 (2.3)

ẋ2 = 1 (2.4)

ẋ2→1 = x2 −x1 (2.5)

ẋ1→2 = x1 −x2 (2.6)

Of course, this is a somewhat contrived example and coupling could be separated differently

or not at all in this case. Equations do not need to be separated in this way, and the user is

free in which manner the equations are modeled conceptually. However, as we will see later,

the separation of equations in their canonical system dynamics and coupling dynamics is

natural for a variety of systems. We will see more examples of coupled dynamical systems in

the following sections. Conceptually, this system can be modeled in cȯdγn using nodes and

edges as shown in figure 2.1.

cȯdγn requires the user to specify systems in this manner, i.e. using nodes and edges, and a

large number of systems can be modeled naturally using these concepts.

14



2.2. Core concepts

x1 −x2

x2 −x1

ẋ1 =−1 ẋ2 = 1

Figure 2.1 – A conceptual representation of a network of two nodes which are bidirectionally
coupled.

2.2.2 Mathematical language

All variables and differential equations are expressed in a mathematical expression language

which closely resembles that of existing programming languages, with some additional fea-

tures specific to the design of dynamical systems. In cȯdγn everything that has to be computed

is expressed by mathematical expressions. In addition, all values in cȯdγn are real-valued,

2-dimensional matrices. This decision imposes certain limitations. For example, complex

numbers cannot currently be represented in cȯdγn, nor can natural or integer numbers. How-

ever, we found that this does not pose a practical limitation on the type of systems that we

want to model in cȯdγn. Vectors are simply a matrix of n-by-1 or 1-by-m and single numerical

values are matrices of 1-by-1.

Furthermore, all mathematical expressions have static dimensions. In other words, once an

expression is defined, its dimensions cannot change during the course of simulation. This is

a very important design decision in cȯdγn leading to a large number of advantages in terms

of performance and applicability. The rationale, advantages and disadvantages of this are

discussed in more detail in section 2.7.

Built-in operators

cȯdγn supports all of the standard mathematical operations on values and all operations are

properly defined for vectors and matrices. Table 2.1 lists all available operators in the language.

Unless otherwise specified, they operate on an element-wise basis. For binary operators, the

left and right hand sides need to be of the same dimension (with the exception of matrix

multiplication) or one of the values needs to be a 1-by-1 value.

Logical operations are supported, but operate on floating point values. The resulting values

are again floating point values.
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Table 2.1 – List of built-in operators

Operator Description Matrix behavior

−a Unary minus
a −b Subtraction
a +b Addition
a ∗b Multiplication Matrix multiplication is performed when the num-

ber of columns in a equals the number of rows in
b. Otherwise, element wise multiplication is per-
formed.

a . *b Element wise multiplica-
tion

Unambiguously performs element wise multiplica-
tion.

a /b Division
a %b Floating point modulo
a ^b Power

Logical operators

a > b Larger than
a < b Smaller than
a >= b Larger than or equal to
a <= b Smaller than or equal to
a==b Equal
a ! =b Not equal
a ||b Or
a &&b And
!a Negation
a ? b : c Ternary conditional, i.e.

(if a then b else c)

Unicode operators

a ·b Multiplication of a and b, same as ∗
a ÷b Division, same as /

Built-in functions

Table 2.2 – List of built-in functions

Function Description

sin (a) Sine

cos (a) Cosine

tan (a) Tangent

asin (a) Arc sine

acos (a) Arc cosine
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atan (a) Arc tangent

atan2 (a,b) Arc tangent of two variables

sinh (a) Hyperbolic sine

cosh (a) Hyperbolic cosine

tanh (a) Hyperbolic tangent

sqrt (a) Square root

invsqrt (a) Inverse square root

hypot (a,b) Euclidean distance between a and b

hypot (a) Norm of a (i.e.
p

a2)

sqsum (a) Squared sum of a (i.e.
∑

i a2
i )

min (a,b) Element wise minimum of a and b

min (a) Minimum element of a

min (a,b) Element wise maximum of a and b

min (a) Maximum element of a

exp (a) Base-e exponent of a

exp2 (a) Base-2 exponent of a

erf (a) Error function of a

floor (a) Rounding down to nearest integer

ceil (a) Rounding up to nearest integer

round (a) Rounding to nearest integer

abs (a) Absolute value

pow (a,b) Power of a to b

ln (a) Base-e logarithm of a

log10 (a) Base-10 logarithm of a

lerp (a,b,c) Linear interpolation of b to c given a ∈ (0,1)

sign (a) Sign of a

csign (a,b) Value of a with sign of b

clip (a,b,c) Value of a bounded in (b,c)

cycle (a,b,c Value of a cyclic to (b,c)

index (a,b) Index a by indices in b

lindex (a,b,c) Linear indexing of a by indices in b, given row dimension c

transpose (a) Transpose

inv (a) Inverse

pinv (a) Pseudo inverse

linsolve (a,b) Solve for x in ax = b

qr (a) QR decomposition

sum (a) Sum of elements in a

product (a) Product of elements in a

length (a) Largest dimension of a

size (a) Dimension of a (returns 1-by-2 rows and columns in a)

size (a,0) Number of rows in a

size (a,1) Number of columns in a
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vcat (a,b) Vertically concatenate a and b

zeros (n,m) Zero matrix of n-by-m

eye (n) Identity matrix of n-by-n

diag (a) Diagonal of a

tril (a) Lower triangular matrix of a

triu (a) Upper triangular matrix of a

csum (a) Column wise summation

rsum (a) Row wise summation

Unicode functions

aT Transpose, same as transpose (a)∑
(a) Sum of elements in a, same as sum (a)∏
(a) Product of elements in a, same as product (a)

a2 a squared, same as pow (a,2)
p(a) Square root of a, same as sqrt (a)

Rigid Body Dynamics Functions

slinsolve (A,b,λ) Sparse linear system solve for x in Ax = b given sparsity induced

by branching from λ

sltdl (A,λ) LT DL decomposition of A given sparsity induced by branching

from λ

sltdldinv (L,b) Solve for x in x = D−1b given LT DL decomposition in L

sltdldinvlinvt (L,b,λ) Solve for x in x = D−1L−1b given LT DL decomposition in L and

sparsity induced by branching from λ

sltdllinvt (L,b,λ) Solve for x in x = L−T b given LT DL decomposition in L and

sparsity induced by branching from λ

sltdllinv (L,b,λ) Solve for x in x = L−1b given LT DL decomposition in L and

sparsity induced by branching from λ

A large number of built-in functions are readily available for use in cȯdγn. Table 2.2 lists

all currently available functions. Most functions listed are general purpose mathematical

functions. There are however a few special purpose functions (at the end of the table) which

are used to solve various aspects of the rigid body dynamics. More details about these functions

are provided in section 2.6.

Random numbers

The built-in functions rand(a) and rand(a,b) deserve special mention in the context of a

cȯdγn dynamical system. cȯdγn takes special care to ensure that random numbers can be
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used reliably and reproducibly during numerical integration. This needs special attention due

the fact that expressions are evaluated as needed during simulation. Therefore, if a simulation

was to be repeated we would like to avoid to obtain different results if expression were to be

evaluated in a different order (which can happen due to the lazy evaluation behavior of cȯdγn).

This is a real problem that earlier versions of cȯdγn did not properly address.

To solve this, cȯdγn keeps track of all calls to rand and transforms these to special instructions

which will always return a cached version of their current random value. These cached random

values are then updated at every integration step. Thus, if for example a variable is defined

as v = rand(), then within the same integration step all references to v will observe the

same random value. The random number generator used in the network can also be seeded

externally such that results can be easily reproduced.

Referencing variables

Named variables can be referenced by name in any expressions. For expressions in nodes,

variables are always resolved first in the same node, then in the parent node, etc. For edges,

variables are first resolved in the edge, then in the input node of the edge, and then in the

parents of the edge. Variables can also be referenced in child nodes by using a dot syntax (e.g.

child.v).

Matrix indexing

cȯdγn supports indexing of matrices and vectors. Table 2.3 lists the various types of indexing

that are supported. Unlike some popular languages, indices in cȯdγn start at 1.

Table 2.3 – Matrix index operations

Syntax Description

A[n,m] With n 1-by-1 and m 1-by-1, indexes row n and
column m in A

A[i ] With i 1-by-1, linearly indexes A in column major
order

A[r,c] With r n-by-1 and c 1-by-m, indexes the cross sec-
tion of row indices r and column indices c

A[:,c] With c 1-by-m, indexes the cross sections of all rows
and column indices c

A[rb : re ,c] With rb 1-by-1, re 1-by-1 and c 1-by-m, indexes the
cross section of row indices rb to re and column
indices c

A[B ] With B n-by-m, linearly indexes A in column major
order and returns an n-by-m matrix
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User functions

Apart from variables, nodes can also contain user defined functions. These functions consist of

a mathematical expression which resolves its variables in its named arguments. Once defined,

user functions can be called in the same way as built-in functions are called. User functions

cannot produce side-effects (i.e. they simply return the value of their expression), but they can

resolve variables and other functions from the context in which they are defined.

Symbolic math

cȯdγn implements a small number of symbolic operations. In cȯdγn jargon, these are called

operators, since they operate on symbolic expressions. Symbolic operators receive one or more

expressions which they are free to operate on. They then return a function, implementing

the symbolic operation, which can be called like any other function. Table 2.4 lists the most

important operators available.

Table 2.4 – Symbolic operations

Syntax Description

dt [expression,n]() Calculates the nth time derivative of the provided
expression.

v ′, v ′′ Shorthand syntax to obtain the respectively first,
second, etc. time derivative of a variable v (i.e.
equivalent to dt [v](),dt [v,2](), etc.)

diff [ f ,n; v1, v2, ...](args...) Obtain the nth symbolic derivative of the user func-
tion f , towards the variables (function arguments)
v1, v2, etc. The resulting function represents the
derivative of f and can be called with the same ar-
guments as f

pdiff [ f ,n; v](args...) Obtain the nth partial symbolic derivative of the
user function f , towards the variable (function ar-
gument) v .

∂[ f ,n; v](args...) A shorthand notation for the partial derivative op-
erator.

delayed[expression, init](dt) Provides a dt delayed version of the provided
expression. The init expression is optional and is
used to initialize the delay history (which is 0 if
not specified). The init expression can reference t
which will run from tbegin −dt to tbegin

Note that the symbolic derivation in cȯdγn is deeply integrated into the mathematical engine.

This means that derivatives are properly propagated, can be taken on user defined functions

and arbitrary expressions. Time derivatives properly take into account the special time variable

t and properly use the differential equation of a state variable as the time derivative if required.
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2.2.3 Edge projections

All differential equations in the system, i.e. the derivatives of all state variables, are written

as mathematical expressions operating on state variables through edges. Conceptually it is

useful to think of differential equations as the projected rate of change of a state variable.

Edges in the network graph project these rates of change, which they encode, towards state

variables in nodes in the system. More than one edge can project a differential equation on

the same state variable. The resultant true differential equation is then simply the sum of all

the individual projections.

Direct projections

Apart from projecting onto state variables, edges can also project onto normal variables. Since

nodes implement the concept of data encapsulation (they cannot directly inspect data from

other nodes), direct projections can be used to transfer data from one node to another. This

has exactly the same effect as accessing variables from other nodes directly, except that the

relationship between the nodes is now encoded by its edges. This makes it clear where data

between nodes comes from in a structural manner. An example where this is useful is when

integrating external data sources into a cȯdγn network. A special node can contain variables

representing external data (such as sensor values) which can then be directly projected to all

nodes requiring that information.

2.2.4 Events

Dynamical systems are not always modeled as one single continuous system. It is not uncom-

mon for a single dynamical system to instead be modeled as several systems with different

dynamics, and a switching mechanism to transition from one system to another (for example

rigid body with contact dynamics). These types of discrete, or hybrid, dynamical systems

are supported in cȯdγn by means of a built-in event system. Events are embedded inside

nodes and allow a transition from one or more event-states of that node to another when a

specified condition becomes true. Additionally, events can cause discrete changes in variables.

This is used to allow implementation of changes in states over the horizon of the event (see

section 2.6.10 for an example of how this is used when implementing hard contacts for Rigid

Body Dynamics). Finally, differential equations can be associated to be only active when the

corresponding input node of the edge is in one or more particular event-states, thus allowing

for different dynamics during different states of the simulation.

Event refinement

Events can be activated by simply observing the condition at every simulation step, but it can

sometimes be important to be more precise about the exact time at which the event condition

transitioned from false to true. Having inaccurate event timing can lead to inaccuracies in the
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simulation (for example energy loss) since part of the dynamics are incorrectly simulated or

can lead to penetration errors in contact modeling. In cȯdγn this is called event refinement

which can be enabled for each event individually. To refine events, a maximum allowed error

on the transition condition of an event can be specified. The logical condition expression is

decomposed into a binary tree where each non-terminal node is a logical operator (i.e. <,>
,<=,>=, ||,&&), and each terminal node is a mathematical expression with a non-logical root.

The logical operators <,>,<=,>= are transformed such that their zero-crossing (from negative

to positive) indicates that the event condition activated during the current integration step.

This can be done simply by replacing the logical operator with a subtraction (and reversing

left and right hand sides for < and <=). If we indicate this transformation by Zi (a), with i

the integration step and a the logical expression, then we can say that the event activated

when Zi−1(a) < 0 and Zi (a) >= 0 (or Zi−1(a)<=0 and Zi (a) > 0 in the case of the <= and >=
operators). In other words, the event activates when Z undergoes a positive zero-crossing.

From this representation, we can also directly obtain a linearized estimate of the time step

∆te (a) required to obtain an exact event condition, as given in equation 2.7.

∆te (a) = −Zi−1

Zi (a)−Zi−1(a)
∆t (2.7)

For the || operator we can simply check if either of its operands had a zero crossing. Similarly,

for the && operator we check if 1) the left hand side has a zero crossing while the right hand

side is positive, 2) the right hand side has a zero crossing while the left hand side is positive or

3) both left and right hand sides have a zero crossing. The estimated ∆te of the operand for

which a zero crossing occurred is propagated upwards in the binary tree. If both operands

underwent zero crossings, then the smallest ∆te is propagated.

2.2.5 Numerical integration

Numerical integration is one of the main uses of cȯdγn for dynamical system modeling. For

this purpose, cȯdγn provides a flexible and extensible numerical integration infrastructure

with different numerical integration methods. Special care has to be taken to evaluate the

various features of the network, handling differential equations, events and random numbers

in the right order. The general integration procedure is shown in table 2.5.

Only steps 5) and 6) are specific to the type of integrator used. This makes it easy to provide a

variety of different numerical integrator schemes, which are only concerned about computing

the derivatives and numerically integrating the states, without needing to know about any

cȯdγn specific internal features. A basic variety of built-in integration schemes, including Euler,

Runge-Kutta 4th order, Leap-Frog and Correction-Prediction are implemented and provided

(Butcher, 2008). Furthermore, new integrator types can be easily implemented and loaded

through the use of plug-ins. cȯdγn currently does not provide adaptive time step integrators,

although they could be easily implemented. The reason is that it is often preferred to have
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guarantees on execution time, which adaptive time step integrators do not give. However,

they do provide more accurate integration and can be better suitable for systems with specific

behavior (such as stiff systems). It would therefore be interesting to provide adaptive time step

integrators in the future.

Table 2.5 – Integration procedure

1) Compile all the equations in the network

2) Collect all state variables, discrete variables, edge projections, events and random
number instructions

3) While t < endtime

1) Store current event condition expression values

2) Generate a new set of random values for all rand instructions

3) Store the current values of all state variables

4) Update all symbolic math operators (for example, compute and store delayed
history)

5) Evaluate all active edge projections on state variables with the selected integrator
to compute the state derivatives

6) Numerically integrate all state variables with the selected integrator, using the
computed derivatives from the previous step

7) Evaluate all active edge projections on discrete variables

8) Discretely integrate all discrete variables using the values obtained in the previous
step

9) Evaluate all event conditions and determine which events were activated by the
current integration step. For all activated events, determine (if any) the small-
est requested event refinement. If there is an event refinement then, restore the
previously saved state (from step 3)) and continue from step 5).

10) Execute all activated events, evaluating discrete changes to variables, updating the
event-state of the nodes to which the events belong and updating the active set of
edge projections according to the new event-state

2.3 Modeling language

The previous section gave a conceptual overview of the cȯdγn framework for dynamical

modeling, but did not yet show how the actual modeling in cȯdγn is done. Domain specific

languages, or DSLs, are special purpose computer languages developed to address problems

23



Chapter 2. Dynamics

in a specific domain. This is in contrast to general purpose programming languages which

are able to solve problems in any domain by means of general, instead of specific, constructs.

The advantage of a domain specific language is that it can be tailored to fit the problem

domain exactly, leaving out constructs that are not required, thus resulting in smaller and

easier to understand languages. At the same time, anything outside of the domain or its

conceptualization will be harder to express than it would normally be in a general purpose

language.

In earlier versions of cȯdγn, models were specified using an XML derived format. XML is

very much a general purpose markup language which can be used to describe any type of

hierarchical model, and is commonly used for defining models in existing modeling tools (for

example URDF). In this format, every part of the model had to be explicitly written down and,

due to the nature of XML, this quickly led to very large and hard to maintain models. It became

clear that although the cȯdγn framework provided useful concepts and tools for dynamical

systems modeling, the manner in which these models needed to be written down was lacking

and hindered adoption.

The cȯdγn modeling language is a declarative DSL tailored towards the specific concepts

described in the previous section. It allows for concise expression of complex, coupled dy-

namical models in an easy to learn language. Making the language declarative, as opposed

to imperative (or functional), is a natural paradigm for modeling. I. e. models are described

by their structure rather than as a series of steps. This makes them easier to reason about,

analyze and manipulate. Not only is this important because it makes the modeling easier, it

also allows for writing tools that can automatically analyze, transform and optimize models,

which would otherwise be difficult if not impossible. Section 2.7 shows in detail how models

can be automatically optimized for performance, while section 2.8 explains how various tools

are built to work with cȯdγn models.

In the remainder of this section the specially developed cȯdγn modeling language is described

in detail. Each feature of the language is accompanied by examples of increasing complexity

to show how it can be expressed in the cȯdγn language.

2.3.1 Variables and simple differential equations

The basic building blocks of a cȯdγn model are nodes, edges and variables. An empty document

represents the top level cȯdγn network, which conceptually is just like any other node, except

that it does not have any parent node. To define variables in a node, the following syntax can

be used:
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# Position of the point mass

y = 1

# Gravity

g = 9.81

# Mass

m = 0.6

# External force

f = 0

# Acceleration

a = "−g + f / m"

Note that the definition of a variable consists of a name, followed by =, followed by the ex-

pression for that variable. Simple numerical values can be specified directly (9.81), but more

complex expressions must be enclosed in double quotes "like so".

This network in itself is not that interesting, since it does not specify any dynamics of the

system. The acceleration of the point mass is defined, but just as a normal variable. To define

a differential equation instead, we can use the following syntax:

# Initial position of the point mass

y = 10

# Gravity

g = 9.81

# Mass

m = 0.6

# External force

f = 0

# Acceleration

ÿ = "−g + f / m"

# Or alternatively

# y’’ = "−g + f / m"

The simple statement in the example above has several important and interesting implications.

First, cȯdγn is a Unicode aware language. This means that we can use Unicode characters in

names, so writing τ = 2 is perfectly valid in cȯdγn. Furthermore, cȯdγn has Unicode syntax

support for a few operations allowing to write models closer to their mathematical form.

To write differential equations, cȯdγn supports the Unicode combining dot and double dot

characters, i.e. one can write ẏ to define a first order differential equation, or ÿ for a second

order equation. It is not always convenient to write equations in this way, so cȯdγn also

supports a alternative prime (y’’) syntax for the same purpose.

The second important implication is that although cȯdγn internally only supports first order

differential equations, we can easily still easily write nth order models. cȯdγn automatically
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transforms the model in a series of equivalent first order equations. If we inspect the generated

internal model, we can see that it has been transformed to the following equivalent form:

cȯdγn model 2.1 – Accelerating point mass [play]

y = 10

g = 9.81

m = 0.6

f = 0

# New , automatically created differential equation for position

y’ = "dy"

# New , automatically created state variable for velocity

dy = 0

# Acceleration as differential equation for velocity

dy ’ = "−g + f / m"

The final implication is that although the example above does not define any edges, differential

equations are always necessarily defined on an edge. Recall from section 2.2.1 that every node

contains a special edge for which the input and output are set to the node itself. Using the

prime syntax inside a node, we have defined a differential equation on the self-edge of that

node (in this case the network itself). Figure 2.2 shows the value of y over time when simulating

this trivial network.
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Figure 2.2 – Left: System output of a simple point mass accelerating due to gravity. Right:
conceptual representation of a self-edge

2.3.2 Nodes

Nodes become useful when we want group variables (and other nodes) in a self-contained

subsystem. Defining nodes in the cȯdγn language is done using the syntax shown in model

2.2.

Just as with the top-level node, we can define variables inside the newly defined nodes. All
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cȯdγn model 2.2 – Two accelerating point masses with friction [play]

# Global gravity , accessible from child nodes
g = 9.81

# Define a single node named n1
node "n1" {

# Position of the point mass
y = 20

# Mass
m = 0.6

# External force , air friction
f = "−dy"

# Acceleration
y’’ = "−g + f / m"

}

# Define a single node named n2
node "n2" {

# Position of the point mass
y = 8

# Mass
m = 0.4

# External force , air friction
f = "−dy"

# Acceleration
y’’ = "−g + f / m"

}

variables defined as such are locally scoped to the node. Variables from parent scopes can also

be accessed, which is shown above by having the nodes access the globally defined gravity

variable g. Figure 2.3 shows the result of simulating this network.
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Figure 2.3 – System output of two simple point masses accelerating due to gravity and simple
air friction.

27

http://play.codyn.net/d/RkRyYcDnYf


Chapter 2. Dynamics

2.3.3 Edges

Having defined nodes, we can now implement coupling between state variables in different

nodes using edges. The syntax for adding an edge can be seen in model 2.3. In this example we

take the same network as defined before in model 2.2. We now introduce coupling between

the nodes modeling an additional term to the acceleration of both point masses due to a

bidirectional spring connecting the two.

The syntax for creating an edge is:

edge "name" from "input−node" to "output−node" {

}

The name of the edge is optional, and if left out a unique name will be automatically generated

for it based on the names of the input and output nodes. When an edge is declared, special

attributes can be applied to it making certain constructions easier than they would otherwise

be. In model 2.3 we use the <bidirectional> attribute to automatically create a reverse edge

without having to explicitly define it. Figure 2.5 shows the graphical representation of the

network so created.

If we look at the output of this system in figure 2.4 we see that the output starts to already be

slightly more interesting. The coupling makes it such that the point masses start to oscillate

around each other while accelerating downwards. The simulated air friction cause the oscilla-

tions to dampen out, resulting in the two masses accelerating together towards the end of the

simulation.
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Figure 2.4 – System output of two simple point mass accelerating due to gravity and undergoing
forces from air friction. Additionally, the two point masses are coupled by a bidirectional
spring.

2.3.4 Generators and selectors

Although we are getting somewhere at this point with simple models, some of the examples

already show a certain amount of duplication of effort. Ideally we should be able to declare
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cȯdγn model 2.3 – Coupling by a spring between two point masses [play]

g = 9.81

node "n1" {
y = 20
m = 0.6
f = "−dy"

y’’ = "−g + f / m"
}

node "n2" {
y = 8
m = 0.4
f = "−dy"

y’’ = "−g + f / m"
}

# Create a bidirectional edge between the two nodes implementing
# a simple , bidirectional spring , applying a force resulting in
# additional acceleration
<bidirectional >
edge from "n1" to "n2" {

# Stiffness of the spring. Variables can be defined inside edges
# as well and allow for convenient definitions of constants and
# temporary expressions.
K = "5"

# Additional acceleration due to the force of the spring. Note
# that we have to apply the acceleration to the differential
# equation of the velocity from inside the edge.
dy’ += "K ∗ (input.y − output.y) / output.m"

}

ÿ1 ÿ2

n1 n2

K (y1 − y2)/m2

K (y2 − y1)/m1

Figure 2.5 – Graphical representation of a network of two coupled point masses.

models in a more concise manner. One of the central concepts in the language that enable

this is that of generators and selectors. These concepts are important because it makes the

modeling language both expressive and powerful.

Generators are a special construct in the language which allow to quickly generate multiple

names at the same time. Generators can be used anywhere in the language where names or

identifiers are expected, such as when declaring nodes, edges, variables etc. Generators are

always embedded inside strings, and are enclosed by curly braces. When parsed, they are
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expanded in a combinatorial way, allowing nesting of multiple generators in the same name.

In addition to generating multiple names, generators also support embedded calculations,

mapping and reducing (see table 2.6).

Table 2.6 – Supported generator syntaxes

Syntax Description

"n{1:3}" Generate the names n1, n2, n3

"$(expression)" Performs an embedded calculation of the provided expression
"n{1:5|$(@0 ∗ 2)}" Make a new generator by mapping each value using an expres-

sion. Values can be referred to by @0. The result of the provided
example would be a generator for the names n2, n4, n6, n8

and n10

"{1:3||@0 + @1)}" Reduce a generator to a single name by successively applying
the provided expression, substituting @0 with the first and @1

with the second value. The result of the example would be a
single literal value 1 + 2 + 3

Model 2.4 shows the same model as defined in 2.2, this time using generators to generate

the two nodes at the same time. As shown, without loss of expressiveness, the model is now

more concise while still easy to understand. It is now easier to start modeling more complex

systems.

cȯdγn model 2.4 – Basic generator syntax [play]

g = 9.81

# Define two nodes at the same time , n1 and n2, by using generator syntax.
# This creates the two nodes in parallel. Definitions inside their scope
# now apply to both nodes at the same time.
node "n{1:2}" {

# Inside , we can still declare separate values for each node , by
# using a square bracket syntax
y = ["10", "8"]

# Mass
m = [0.6, 0.4]

# External force
f = 0

# Acceleration. The same for both nodes.
y’’ = "−g + f / m"

}

Model 2.5 shows what we can do now. This example models a system of 10 nodes each with

two state variables, x and y. All nodes get accelerated downwards on y due to gravity while

a second external force is being exerted. Additionally, the first node on both right and left

sides is modified to add a force coming from a spring connected to the fixed frame. Finally, all

nodes between the right and left side are coupled bidirectionally, such that a spring acts on
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both the x and y states, pulling the point masses of the right and left side towards each other.

Figure 2.6 shows the output of this system (a quasi-chaotic regime), while figure 2.7 shows the

conceptual representation generated by this model definition.

cȯdγn model 2.5 – Generating many nodes and edges using generators [play]

g = 9.81

node "n{1:5}{r,l}" {
m = 1.5

# Generator syntax also applies to variable names
"{x,y}" = "rand(−5, 5)"

x’’ = 0

# External force implementing damping (due to friction)
Dy = 0.5
Fy = "−Dy ∗ dy"

# Acceleration due to gravity plus external force
y’’ = "−g + Fy / m"

}

# We can open up existing nodes and modify them. Here
# we will add a simple fixed spring to the first node on
# both left and right sides
node "n1{r,l}" {

Ky = 10

# Set external force to damping plus a spring force
# pulling back the point mass to 0
Fy = "−Dy ∗ dy + Ky ∗ −y"

}

# This generates full coupling between the left and right
# nodes
<bidirectional >
edge from "n{1:5}r" to "n{1:5}l" {

Kx = "5"
Ky = "20"

dx’ += "Kx ∗ (input.x − output.x) / output.m"
dy’ += "Ky ∗ (input.y − output.y) / output.m"

}

Contexts and expansions

When generators are used, they generate a so-called expansion context which can be accessed

within their defining scope. Expansion contexts can be referenced in the cȯdγn language using

@n syntax, where n is a number referring to a specific group in the expansion context. The 0

group is always the full generated name, while groups 1 to n refer to curly brace expansions in

order of occurrence. Model 2.6 shows the basic usage of referring to expansion contexts.
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Figure 2.6 – System output of a densely coupled system of point masses.
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ÿ

ÿ
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ÿ

l5

r5

ÿ
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Figure 2.7 – Conceptual rendering of a network of a densely coupled system of point masses.
The simple model definition in model 2.5 using generators demonstrates the generative
abilities of the cȯdγn language.

Selectors

Where generators allow for the creation of new elements in the model, selectors on the other

hand allow for referring to one more existing elements in the model using a selection pipeline.

They can be used to select a subset of existing elements based on certain criteria (for example
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cȯdγn model 2.6 – Use of expansion contexts [play]

node "n{1:3}" {
# Here we can access @0 which gives respectively n1, n2 and n3.
# We also have @1 available , resulting in 1, 2 and 3 respectively

# Note that since ‘v’ is a name that itself generates a context ,
# we need to access the second level expansion context by using @@
# in its value to access the 1, 2, 3 expansions from the node name.
# The $() syntax evaluates an inline calculation which is evaluated by
# the language parser at compile time.
v = "$(@@1 ∗ 2)"

}

matching name or having a certain variable). Selectors are useful to open existing elements

and partially redefine them, or to select input and output nodes for edges.

Selectors are defined as pipelines, where the output from the previous selector serves as input

to the next selector. Each element of the pipe line transforms the input it receives to produce a

new set of elements. To select on names of elements (for example a node name), generators or

regular expressions (enclosed in ) can be used as pipeline elements. The initial input to the

selector pipeline is defined by the current modeling context the selector is used in.

Table 2.7 lists some of the most commonly used selectors. Model 2.7 shows some examples of

how these selectors can be used to select nodes based on various selection criteria.

2.3.5 Templates

When there is common functionality to be shared between multiple nodes or edges, templates

can be defined and inherited from. This provides a useful abstraction of functionality that can

be applied to multiple nodes and allows for building libraries of functionality which can be

consumed by various models. Templates are defined in a special block in the network. Model

2.8 shows the basic usage of templates.

2.3.6 Integrator

The type of integrator to use when numerically integrating the network can be specified in a

special, top-level integrator block. The default integrator is Euler and the default time step is

set to 1 millisecond. Model 2.9 shows the basic usage of the integrator block.

cȯdγn model 2.9 – Specify the type of integrator [play]

integrator {

# "The" Runge Kutta method , which refers to the 4th order RK.

method = "runge−kutta"

default−timestep = "0.01"

}
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cȯdγn model 2.7 – Basic selector syntax [play]

# Define some nodes n1_left to n3_right
node "n{1:3}_{left ,right}" {
}

# Open previously defined n1_right to n3_right nodes using a regular expression
node /n(.∗)_right/ {

# Define a variable v on which we can later select
v = 1

}

# Create an edge between all left and right nodes with matching names
# using a regular expression selector and generator selector
edge from /(.∗) _left/

to "@1_right" {}

# Create a reverse edge for each pair of nodes which already have
# a connecting edge. This has the same effect as using the
# <bidirectional > attribute
edge from nodes | if(inputs) | name

to @0 | inputs | input {}

# Select nodes which do not yet have a variable named ‘v’ and
# define a variable ‘v’ with a different value in it
node not(children | variables | "v") {

v = 2
}

cȯdγn model 2.8 – Templates [play]

templates {
node "pointmass" {

m = 1
f = 0

y’’ = "−g + f / m"
}

edge "spring" {
K = "5"
dy’ += "K ∗ (input.y − output.y) / output.m"

}
}

# Construct 5 nodes inheriting from pointmass
node "n{1:5}" : "pointmass" {}

# Construct edges between neighboring nodes , applying the
# spring template to each edge
<bidirectional >
edge from "n{1:5}" to "n$(@1 + 1)" : "spring" {}

2.3.7 Events

When modeling hybrid dynamics, events can be used to switch between different states of

the system effectively using condition expressions. In the language, events are expressed by a

special block which configures:
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Table 2.7 – List of common selectors

Selector Description

root Select the root network
children Select the direct children of objects in the selection.

Children include child nodes and variables
parent Select the parent node of each object in the selec-

tion
first Select the first object in the selection
last Select the last object in the selection
edges Filter the selection keeping only edges
nodes Filter the selection keeping only nodes
variables Filter the selection keeping only variables
input Select the input node for each edge in the selection
output Select the output node for each edge in the selec-

tion
inputs Select all edges projecting onto each node in the

selection
outputs Select all edges projecting from each node in the

selection
name Add an expansion context with the name of each

object
has−template(selector) Filter objects having the template specified by the

provided selector

recurse(selector) Recursively apply the specified selector to the se-
lection

if(selector) Filter selection keeping only elements for which the
provided selector results in a non-empty set

not(selector) Filter selection keeping only elements for which the
provided selector results in an empty set

generator Filter selection based on element names
/regex/ Filter selection based on matching element names

to the specified regular expression
| Pipe input from the previous selector to the next
. Shorthand syntax for | children

1. In which event-states the event is active

2. To which event-state the event transitions its containing node

3. The condition for which the event should be activated

4. Whether or not any event refinement should take place

5. Any discrete variable changes to be executed when the event activates

Model 2.10 shows the model specification of simple bouncing pogo-point masses (each point

mass is on a virtual spring/damper pogo stick). Each pogo-point mass can be in one of two
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cȯdγn model 2.10 – Basic usage of events [play]

integrator {
method = "runge−kutta"

}

templates {
node "pogopoint" {

initial−state "air"

pogolength = 0.1
bounced = 0

y = 1
m = 1
K = 1000
D = 1

# Spring force of the ball when it is being compressed
fspring = "K ∗ (pogolength − y)"

# Damping force of the ball when it is being compressed
fdamping = "−D ∗ y’"

# Acceleration of y due to gravity
y’’ = "−g"

# Acceleration of y due to the spring and damping force. This
# term is only active when the pogo stick is in contact with
# the ground
y’’ = "(fspring + fdamping) / m" state "ground"

# Transfer from the air to the ground when y becomes smaller than
# the pogo stick length
event "air" to "ground" when "y < pogolength" within 0.001 {

# Keep track of the number of times we bounced
set bounced = "bounced + 1"

}

# Transfer from ground to air when y becomes larger than the pogo
# stick length
event "ground" to "air" when "y > pogolength" within 0.001 {}

}
}

g = 9.81

node "p{1:3}" : pogopoint {
y = "rand(1, 3)"
m = [0.6, 0.3, 0.4]
K = [1200, 500, 600]
D = [1, 1.5, 1.8]

}

states, in the air or in contact with the ground. When in the air, the pogo-point mass is only

subject to gravitational forces, accelerating it towards the ground. As soon as the pogo stick

touches on the ground (i.e. when y < pogolength), the state of the node is changed to the

ground state. In this state, the pogo-point mass is subject to an additional acceleration term

due to the spring and damper of the pogo stick.
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Figure 2.8 shows the output of this system. As can be seen, the pogo-point masses correctly

show damped bouncing trajectories as expected. Errors on the exact time of contact are kept

small by the event refinement which refines the timestep until the error of the event condition

zero crossing (y < pogolength) is smaller than 0.001.
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Figure 2.8 – Output of multiple pogo-point mass dynamics with various initial conditions,
masses and spring/damper characteristics.

2.4 Example I: Central pattern generators

The examples of systems modeled in cȯdγn shown until now explain individual system fea-

tures well, but the systems themselves are somewhat contrived. One type of real dynamical

systems for which cȯdγn is very suitable as a modeling tool are central pattern generators.

“Central pattern generators (CPGs) are neural circuits found in both invertebrate and vertebrate

animals that can produce rhythmic patterns of neural activity without receiving rhythmic

inputs” (Ijspeert, 2008). We will focus here on their mathematical modeling and choose an

abstract (instead of a neurological) representation of the CPG. There are a number of well

known abstract oscillator models that are widely used to model the dynamics of oscillatory

systems with interesting characteristics. For example, the Hopf oscillator is governed by the

following differential equations in Cartesian coordinates:

ẋ = γ(µ− r 2)x −ωy (2.8)

ẏ = γ(µ− r 2)y +ωx (2.9)

r =
√

x2 + y2, (2.10)

with state variables x and y , angular frequency ω, desired oscillation amplitude
p
µ and γ

being a constant dictating the speed of convergence to the limit cycle of the oscillator. We

can also write down the equations of the Hopf oscillator in Polar coordinates, providing an
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alternative model for the same system:

φ̇=ω (2.11)

ṙ = γ(µ− r 2)r, (2.12)

with state variablesφ (phase of oscillation) and r (amplitude of oscillation). These two systems

are exactly equivalent and only differ in their representation of coordinates to express it.

Representations however are important. In Cartesian coordinates, the Hopf oscillator can be

modified to be frequency coupled with external oscillatory signals (Righetti and Ijspeert, 2006).

On the other hand, the Polar coordinate representation allows for much more straightforward

coupling of the phase of two or more oscillators. One commonly used coupling on the phases

of oscillators in Polar coordinates is the following:

φ̇i j = wi j ri sin(φi −φ j −θi j ), (2.13)

where φ̇i j is the coupling term from oscillator i to j and is added to the differential equation

of φ j . wi j is the coupling strength, ri is the amplitude of oscillator i , φi and φ j are the phases

of respectively oscillator i and j , and θi j is a phase bias at which the two oscillators should

synchronize. Note that this coupling is diffusive (i.e. it disappears when the two oscillators are

in synchrony). The coupled system can now be represented as:

φ̇i =ωi +
∑

j
φ̇i j (2.14)

ṙi = γi (µi − r 2
i )ri (2.15)

The system from equations 2.14 and 2.15 can be modeled by writing down the isolated oscilla-

tor systems first as a single node with two state variables. Then, we introduce edges to couple

the individual oscillators. Model 2.11 implements such a model of 5 oscillators with nearest

neighbor coupling. The phase bias θi j is set such that the 5 oscillators combined represent

one full traveling wave. The coupling is furthermore symmetric (bidirectional) and consistent

(i.e. θi j = −θ j i in this case). Figure 2.9 shows how this system behaves when simulated. As

can be seen, the phases of all oscillators start out with random initial conditions, but quickly

converge to their desired phase locked behavior.

2.4.1 Van der Pol

Various other popular types of oscillators are easily modeled in cȯdγn as well and provided as

part of the standard library of cȯdγn. Model 2.12 shows basic templates for the Van der Pol

oscillator. Here it can be seen that cȯdγn also makes it easy to make templates inherit from

each other to create new nodes that slightly alter existing functionality. This allows for the

creation of families of systems in modular ways.
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cȯdγn model 2.11 – Basic network of coupled Hopf oscillators [play]

templates {
node "polar_hopf" {

f = 1
omega = "2 ∗ pi ∗ f"

p’ = "omega"

mu = 1
gamma = 5

r = "mu"
r’ = "gamma ∗ (mu − r^2) ∗ r"

x = "r ∗ cos(p)"
}

edge "polar_coupling" {
bias = 0
weight = 1

p’ += "weight ∗ input.r ∗ sin(input.p − output.p − bias)"
}

}

# Define a macro ’n’. Its value can be used later using the @n syntax.
defines {

n = "5"
}

node "h{1:@n}" : polar_hopf {
p = "rand(−pi, pi)"
r = 0.001

}

<bidirectional >
edge from "h{1:@n}" to "h$(@1 + 1)" : polar_coupling {

s = [−1, 1]
bias = "s ∗ $(2 ∗ pi / @n)"

}

cȯdγn model 2.12 – Van der Pol oscillator templates [play]

templates {
node "van_der_pol" {

mu = 5

x = "1"
x’’ = "mu ∗ (1 − x^2) ∗ x’ − x"

}

node "van_der_pol_forced" : "van_der_pol" {
A = 1

p’ = "2 ∗ pi"
x’’ = "mu ∗ (1 − x^2) ∗ x’ − x + A ∗ sin(p)"

}
}

39

http://play.codyn.net/d/hy3Sxadjt1
http://play.codyn.net/d/Oe6Z0FzIuD


Chapter 2. Dynamics

0 1 2 3 4 5 6 7 8

−1

0

1

Time (s)

Po
si

ti
o

n
(m

)

Figure 2.9 – Output of a basic system of phase coupled Hopf oscillators. The 5 oscillators are
initially not phase locked, but quickly converge to their desired phase locked behavior

2.4.2 Matsuoka

Another popular oscillator, especially in robotics, is the biologically inspired Matsuoka oscilla-

tor. The model for this oscillator resembles a neuronal circuit where oscillation occurs by the

mutual inhibition of two neurons. The basic differential equations that govern this system are

the following:

τ1ẋ1 = c −x1 −βv1 −αy2 (2.16)

τ2v̇1 = y1 − v1 (2.17)

τ1ẋ2 = c −x2 −βv2 −αy1 (2.18)

τ2v̇2 = y2 − v2 (2.19)

yi = max (xi ,0) (2.20)

y = y1 − y2 (2.21)

To model this oscillator, we can separate the equations and first model the individual neurons

without their coupling. We then introduce a bidirectional edge between the two neurons

which implements their mutual inhibition. Finally, we can embed this system inside a new

node which represents the final Matsuoka oscillator. The oscillator state is calculated in this

new node from the output of the two neuron nodes. Model 2.13 shows a basic implementation

of this idea.

2.4.3 Morphed nonlinear phase oscillator

One of the difficulties with working with the previously mentioned oscillator dynamical

systems is that it is often hard to design them such that they exhibit a desired output pattern.

In robotics in particular, oscillators (if used) often drive actuators (for example provide input

to a position or torque controller). While the intrinsic properties, such as a stable limit cycle,
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cȯdγn model 2.13 – Matsuoka oscillator template [play]

templates {
node "neuron" {

y = "max(x, 0)"

x = "rand(−0.1, 0.1)"
v = "rand(−0.1, 0.1)"

x’ = "1 / tau ∗ (c − x − b ∗ v)"
v’ = "1 / Tau ∗ (y − v)"

}

node "matsuoka" {
a = "2"
b = "2"
c = "1"

tau = "0.1"
Tau = "0.1"

node "neuron {1,2}" : neuron {}

<bidirectional >
edge from "neuron1" to "neuron2" {

x’ += "−1 / tau ∗ a ∗ y"
}

x = "neuron1.y − neuron2.y"
}

}

of these oscillators are of interest, it becomes important to be able to accurately control the

shape of oscillation as well.

In Ajallooeian et al. (2013) we developed a family of nonlinear oscillators with characteristics

which make it easy to design oscillators with arbitrary limit cycle shapes. The principal idea

is to use a base oscillator with an existing limit cycle, and morph it through the use of a

shaping function to a new, desired limit cycle shape. One of the simplest realizations of such

an oscillator is to take a simple amplitude controlled phase oscillator as the base of the system,

and define a shaping function f (φ) which provides the desired output signal as a function of

the oscillator phaseφ. The only condition for f (φ) is that it must be differentiable. Considering

the following base oscillator:

φ̇B =ω (2.22)

ṙB = γ(µ− rB), (2.23)

with φB the base oscillator phase and rB the base oscillator amplitude, we can write the

realization of morphed oscillator, using f (φ) as a shaping function, as follows:

φ̇S = φ̇B (2.24)

ṙS =µ ḟ (φS)+γ(µ f (φS)− rS) (2.25)

41

http://play.codyn.net/d/jFzq2FTbYD


Chapter 2. Dynamics

Recall from section 2.2.2 that cȯdγn has full support for symbolic derivation, including user

defined function. We can therefore implement this system in a straightforward manner as a

cȯdγn model. Model 2.14 shows a basic implementation of such a system. It first models the

general morphed oscillator as a template, which can then be realized while specifying a user

defined function for shaping rS.

cȯdγn model 2.14 – Example model of a morphed phase oscillator [play]

templates {
node "morphed" {

omega = "2 ∗ pi"
mu = "1"

gamma = 1

# User defined shaping function. This can be overridden
# in realizations of this template
f(theta) = "sin(theta)"

p’ = "omega"
r’ = "mu ∗ f(p)’ + gamma ∗ (mu ∗ f(p) − r)"

}

edge "coupling" {
bias = 0
weight = 1
p’ += "weight ∗ sin(input.p − output.p − bias)"

}
}

node "m1" : morphed {
f(theta) = "cos(theta ∗ 2 + 0.2 ∗ pi) ∗ (0.1 + sin(theta))"

p = "rand(−pi, 0)"
r = 6

}

node "m2" : morphed {
f(theta) = "cos(theta ∗ 2 + 0.2 ∗ pi) ∗ (0.1 + sin(theta)) + 0.5"

p = "rand(0, pi)"
r = −4

}

<bidirectional >
edge from "m1" to "m2" : coupling {

weight = 0.5
}

2.5 Example II: SLIP model

The Spring Loaded Inverted Pendulum model is a very well known and extensively researched

model which describes fundamental properties of running (Seyfarth et al., 2002). The basic

model is relatively simple, consisting of a single leg, modeled as a point mass which under-

goes forces exerted on it from a (preloaded) spring when the (virtual) leg is in contact with

the ground. During the swing phase, the point mass undergoes a purely ballistic motion. A
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Figure 2.10 – Output of a coupled system of two morphed oscillators with arbitrary shaping
functions. The two oscillators start outside their limit cycle but quickly converge. At the same
time, a bidirectional coupling on the phase ensures phase locking behavior after a short period
of time.

parameter of the model, the angle of attack, determines when the leg touches the ground

during the ballistic motion and with which angle the leg touches down. The dynamics of the

leg during this phase (i.e. swinging the leg forward) are ignored in this model (i.e. the leg is

massless). Figure 2.11 depicts a schematic version of the model.

m

l

α

Figure 2.11 – Schematic depiction of the SLIP model. The basic SLIP model consists of a
single point mass m connected to a massless spring with rest length l . The angle of attack α
determines at which angle the leg transitions from the swing phase to the stance phase during
locomotion.

Even though the model is simple, it can be shown to be self-stabilizing and can be used as a

basis for deriving motion for more complicated legged structures. The model dynamics for

this system can be easily implemented in cȯdγn using events to switch between the hybrid

dynamics of the stance and swing phase. Model 2.15 provides the basic model, using default

parameters for the angle of attack (α = 68◦), rest length (l = 1), mass (m = 80) and spring

stiffness (k = 20 kN) obtained in (Seyfarth et al., 2002).

As an example, we will replicate the results obtained from (Seyfarth et al., 2002) where the

number of steps-to-fall is obtained as a function of spring stiffness and angle of attack. We

leave all other parameters fixed (l = 1, m = 80) and vary the stiffness from 0 to 50 kN, and the

angle of attack from 40◦ to 80◦. We then forward simulate the model for each combination
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cȯdγn model 2.15 – Spring loaded inverted pendulum [play]

integrator {
method = "runge−kutta"

}

g = 9.81

node "slip" {
initial−state "air"

l = 1 # Spring rest length
aoa = "(90 − 68) / 180 ∗ pi" # Angle of attack

m = 80 # Mass
k = "20000" # Spring stiffness

x = 0
y = l

dx = 5
dy = 0

x’’ = 0
y’’ = "−g"

xc = 0 # Ground contact position. Updated from events.

leglength = "hypot(x − xc, y)" # Current leg length
fspring = "k ∗ (l − leglength)" # Force of the spring

aol = "atan2(xc − x, y)" # Current angle of attack

steps = 0 # Number of steps taken

# Transition from air to ground on leg touch down
event "air" to "ground" when "y < l ∗ cos(aoa)" within 0.001 {

set xc = "x + l ∗ sin(aoa)" # New contact position
set steps = "steps + 1"

}

# Termination condition , falling or more than 24 steps made
event any to terminate when "y < 0 || steps >= 24" {}

# Transition from ground to air when spring is fully extended
event "ground" to "air" when "leglength > l" within 0.001 {}

# x’’ = projected(FSpring , X) / m
dx ’ = "(−sin(aol) ∗ fspring) / m" state "ground"

# y’’ = projected(FSpring , Y) / m
dy ’ = "(cos(aol) ∗ fspring) / m" state "ground"

}

of stiffness and angle of attack and record for each simulation the number of steps made.

Note that the simulations automatically terminate whenever the solution fails (falls down)

or when a maximum number of 24 steps has been reached. Figure 2.12 shows the obtained

characteristic J-shaped result from running this simulation.

We performed the simulation on a grid of 100 stiffness and 100 angle of attack values, using a

Runge Kutta order 4 numerical integrator with a timestep of 1 millisecond. The simulations
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Figure 2.12 – Number of steps to fall for the SLIP model for different combinations of spring
stiffness and angle of attack using cȯdγn. The characteristic J-shape indicates the stable region
of forward locomotion (Seyfarth et al., 2002).

were run on an iMac, 3.2 GHz Intel Core i3 with 4GB of 1333 MHz DDR3 memory, using codyn

3.6. Evaluating the entire space (i.e. 10000 simulations) took 4 minutes and 38 seconds of real

time with libcodyn, averaging at 0.028 seconds per simulation. In section 2.7 we show in more

detail how we can obtain better performance by developing a special tool to automatically

generate optimized code. Using that tool, we can drastically reduce the total simulation time

to only 6 seconds (i.e. an increase in performance of a factor 45).

2.6 Rigid body dynamics

In the previous sections, most of the physically based examples that were shown were very

simplified versions of real physical systems. It is relatively simple to derive the dynamical

system models for these simplified cases by hand. However, as soon as we start to properly

model inertial dynamics and go from single point masses to articulated rigid bodies, the

system equations become unwieldy very quickly. Even if the differential equations for simple

systems, for example a double pendulum, can be derived by hand, the procedure is error

prone and leads to enormous equations which are very hard to maintain.

When we look at the equations of motion for rigid body dynamics, the general formulation of

the dynamics is given by:

H(q)q̈ +C (q , q̇) =τ (2.26)

This equation is written in terms of state variables q and q̇ , which are the generalized coor-

dinates of the system. The term generalized refers to the fact that one is free to choose any

45



Chapter 2. Dynamics

set of coordinates q , q̇ which fully describe the system, and write the equations of motion

in terms of these coordinates. For example, one can describe the equations of motion for an

N-degree-of-freedom manipulator in terms of their relative joint angles or their absolute joint

angles. The resulting models will exhibit exactly the same behavior, but the exact equations of

motion will differ.

In equation 2.26, H(q) is called the mass matrix and C (q , q̇) contains all the forces due to

gravity, coriolis effect and centrifugal effects. τ is the set of generalized forces that affect the

system. The exact meaning of these forces depends on the choice of generalized coordinates.

The goal of any RBD simulator is then to calculate H(q) and C (q , q̇) given the RBD model

specification and the current state of the system. Once obtained, equation 2.26 can be used

to either solve for q̈ given τ, or to solve for τ given q̈ . The first refers to solving the forward

dynamics and is used to simulate the system forward in time, integrating accelerations and

velocities to obtain motions. The second refers to inverse dynamics in which case all the

motions are known, and one is interested in knowing which generalized forces (τ) would cause

these motions to occur.

cȯdγn has a very unique view on the construction of the equations of motion for rigid body

dynamics. It does not treat the rigid body dynamics differently from any other dynamical

system, and modeling results in a natural treatment of dynamics using cȯdγn concepts. The

main motivations and objectives for providing RBD simulations in cȯdγn are the following:

1. Open: cȯdγn is completely open and free to use. There are no limitations to using or

modifying it. Models can be easily shared and obtained results replicated by anyone.

2. General: the rigid body dynamics are derived generally, and should not impose restric-

tions of the type of articulated systems which can be modeled and simulated. It is as

easy to simulate robotic manipulators as it is to model legged articulated systems.

3. Extensible: an important objective for cȯdγn is to easily allow extending of the derived

equations of motion. The openness and generality objectives support this, but cȯdγn goes

a step further due to the way it treats the rigid body dynamics as any other dynamical

system. This makes it straightforward to add customized joint models, contact models

or additional dynamics.

4. Expressive: a recurring motivation for cȯdγn is to be expressive, without loss of perfor-

mance. Where existing simulators need special purpose, inaccessible (but high perfor-

mance) RBD simulation engines, cȯdγn expresses all dynamics, without exceptions,

in the cȯdγn language. Equations are therefore written close to their mathematical,

textbook form and easy to understand.

5. Fast: cȯdγn explicitly aims to be a fast simulator. Deriving and simulating the RBD

equations of motion in a straightforward and naive way results in very slow simulation

times. Not only does cȯdγn provide the automatic derivation of fast, optimized code, it

importantly does so without loss of generality or expressiveness in the language. Section

2.7 explains in detail how cȯdγn manages this.
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Before we dive into the details of the cȯdγn approach to RBD, we first briefly overview existing

state of the art RBD simulators.

2.6.1 Existing simulators

There are generally speaking two popular, but different methods for solving rigid body dy-

namics. Although both methods are derived from the same laws of mechanical physics, they

greatly differ in the way that they solve for the equations of motion. The first method (re-

ferred to here as constraint-solver RBD simulators), which has been popularized through

simulators originally developed for games (such as ODE, Bullet Physics or Box 2D) is based

on the direct application of Newton’s second law for linear motion and Euler’s second law

for angular motion. They are usually first order simulators (velocity based) which describe

the motions of single bodies independently, and then continue to explicitly add (and solve

for) constraints imposed by joints. This method is in stark contrast to the second popular

method (generalized EoM RBD simulators), which is based on the derivation of the equations

of motion in generalized coordinates. Here, the constraints imposed by the joints are solved for

by describing the dynamics in terms of coordinates that include these constraints implicitly.

The actual constraint forces therefore do not need to be solved for explicitly which leads to

very accurate and stable simulations. Furthermore, having the equations of motion explicitly

derived, simulators based on this method can be used for analysis, control and design.

There has been a recent interest in the development of accurate and importantly open RBD

simulators which has lead to several new software packages specifically targeting robotics and

research. Some of the important recent developments are briefly discussed here.

ODE/Bullet derivatives

There are many available software packages that use ODE (Open Dynamics Engine) or Bullet

Physics as the underlying library to solve for the equations of motion. Both ODE and Bullet

(which itself is a derivative of ODE) are constraint solver RBD simulators. There are many ad-

vantages to this method. Simulations are generally fast, since joints are modeled as constraint

equations which can be solved for numerically very quickly. The method also does not require

computing global system entities, such as the mass matrix, since computations for each body

are done locally and constraints solved for explicitly. Models can therefore also be constructed

very quickly, since no complicated derivations have to be performed to obtain the equations

of motion in a reduced, symbolic form.

There are however certain disadvantages of these simulators which make them largely unsuit-

able for scientific purposes. In particular, since these simulators were designed for gaming

purposes, they allow for certain non-physical phenomena with the sole purpose of stabilizing

the simulation. It thus trades accuracy for speed and stability which can lead to unexpected

results. One known issue is for example that joints can easily drift apart during simulation due
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to numerical inaccuracies while solving constraints. This problem is addressed by constraint

force mixing techniques that try to stabilize this drift. Nevertheless, this can result in joints

temporarily being separated. It also means that energy can be easily injected into the system

as a side effect. Constraint forces (and by implication contact forces) are therefore unreliable

as estimations of actual physical forces. They represent a solution to the system constraints

but are otherwise non-physical. Finally, since the equations of motion of the full system are

never actually derived, these simulators do not provide any system kinematic (e.g. Jacobians)

or inverse dynamics models and are thus only suitable to simulate forward dynamics.

Because of these reasons, simulators such as ODE and Bullet are a great tool when the sole

interest is to forward simulate systems, i.e. a reasonable realization of RBD to obtain physical

motions and general model validations. They are however a poor solution when one is inter-

ested in deriving dynamics (or kinematics) based control laws, and particularly ill fitted to

perform accurate simulations, derive design principles (e.g. minimum bearing specifications)

or estimate interaction forces.

It should be noted that in a recent development (late 2013), acknowledging the need for

more accurate simulations, in particular for robotics, the Bullet physics engine has developed

support for a special purpose engine based on Featherstone’s articulated rigid body algorithm.

Bullet is therefore no longer solely an excellent tool for introducing RBD in games, but is

interesting also as a tool for research and in particular, robotics research.

The following simulators are all generalized EoM RBD simulators rather than constraint-solving

RBD simulators.

ADAM

ADAM is a sophisticated, proprietary, multibody dynamics simulator developed by Msc soft-

ware. It provides state of the art tools for system design, excelling at extremely detailed and

accurate simulations. As an RBD simulator, it is an industry standard and used by for example

large car manufacturers to aid in the design and analysis of complicated mechanical systems.

Designed for the industry, it is however not commonly used for Robotics research. Not only is

it a closed product, simulations are also very slow, due to their great level of detail, and are

focused specifically on industrial design.

OpenSim

Another very interesting and promising dynamics simulator is OpenSim/SimTk (Delp et al.,

2007). Developed at Stanford, it largely focuses on the simulation of musculoskeletal models

used to study biomechanics and rehabilitation. Its primary target is to study human motion,

but it can be used for humanoid robotics as well.
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SimMechanics

SimMechanics is a popular, simulink based simulator developed by Matlab. It is particularly

attractive when the user is already familiar with development of models in Simulink, in which

case modeling of mechanics can be done just as any other system. Of course, Matlab is not

freely available, but it is probably one of the most professional and furthest developed software

package for mechanical simulation used in Academia. Models can be either simulated directly

in Simulink, or compiled to native code which accelerates the simulation time.

Robotran

Robotran is an RBD simulator developed by the university of Louvain which uses a symbolic

derivation of the equations of motion based on a recursive Newton Euler formulation (Samin,

2003). Interestingly, it allows for modeling of multiple domains, most notably the mechanical

and electrical domains. It can be used for example to model both the rigid body dynamics and

the motor actuator dynamics in a single, consistent model. Unfortunately, the current version

of Robotran is relatively slow, and depends both on the use of Matlab and relies on an external

server to derive the equations of motion. It can therefore not be used freely. It also supports

only a limited number of joint models (only single DOF rotational and prismatic joints are

supported) and does not provide any sophisticated ground contact models.

MuJoCo

MuJoCo (Todorov et al., 2012) is a very recent and promising RBD simulator. It aims to be a

general purpose, fast and accurate dynamics solver, with a particular focus on deriving control

from the rigid body dynamics. It derives equations of motion in general coordinates and has

a state of the art constraint solver to solve for contact dynamics as well as additional, user

defined constraints. Unfortunately, although initially advertised as being released as free and

open software, it has not been made available at the time of writing.

cȯdγn

The philosophy behind cȯdγn is quite different from most other simulators. From the begin-

ning, cȯdγn has been a general purpose, coupled dynamical systems framework. It focuses not

on algorithms in the traditional sense, but instead relies on declarative modeling. Unlike in

most other simulators, which support declaring only model structure, cȯdγn also declares all

computation. This does impose some limitations, since if a problem cannot be solely declared,

it cannot be represented in cȯdγn. However, it also forces to look at rigid body dynamics from

a different perspective.

cȯdγn does not contain any special purpose rigid body dynamics engine. Every and all dynam-

ics are simply declared in terms of physical quantities. There are no additional solvers, nor

49

http://www.robotran.be/
https://www.mujoco.org/\begingroup \let \relax \relax \endgroup [Pleaseinsert\PrerenderUnicode{‎}intopreamble]


Chapter 2. Dynamics

exceptions made to be able to implement rigid body dynamics. Furthermore, the derivation of

the equations of motion is done entirely using the cȯdγn language. The principle is that the

user creates a model description, specifying all necessary quantities such as masses, inertia

tensors, joint types, etc. Hereafter, a cȯdγn file which gets included extracts structure, through

the use of selectors, and completes the dynamics equations by declaring edges to project

quantities in the appropriate locations. The result is a fully declarative dynamics model of the

rigid body dynamics. There are two main advantages, 1) dynamics are considered as a whole,

whether it is rigid body, oscillators or any other dynamics that can be represented in cȯdγn,

and 2) a declarative model allows for rigorous optimizations and high performance difficult to

obtain otherwise.

The remainder of this section provides a detailed overview of the state of the art rigid body

dynamics of cȯdγn.

2.6.2 Deriving equations of motion

There are several different methods for deriving the equations of motion in the form of

equation 2.26. Since they derive the same equation, different methods result in the same

dynamics, but may differ in computational complexity and numerical stability. Two widely

used methods are the Lagrange II and Projected Newton Euler methods.

Lagrange II

The Lagrange II method is based on the relation between the motions of a system and its

kinetic and potential energies. It is a popular method because derivation of the equations is

relatively simple. The general procedure is shown in equations 2.27 to 2.30.

T =
∑

i

1

2
mi ṙ T

i ṙi +
1

2
IiΩ

T
i Ωi (2.27)

V =
∑

i
−r T

i fi (2.28)

L = T −V (2.29)

d

dt

(
∂L

∂q̇

)
= ∂L

∂q
(2.30)

Given a multi body, articulated, rigid body system, derive equations for the kinematic (T ) and

potential (V ) energy at the center of mass (ri ) for each body in the inertial frame. Furthermore,

ṙi is the linear velocity of body i andΩi is its corresponding rotational velocity. fi is the total

external force (including gravity) on body i , applied at its center of mass. Then, the Lagrangian

(L) is defined by L = T −V and Lagrange’s equation, stated in 2.30 defines the equations of

motion. This equation can be rewritten to obtain the H and C matrices in the general form.

The elegance of this method is that it is easy to write down the potential and kinetic energies in
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the system. The issue however is that to resolve the actual equations of motion, many partial

derivatives have to be obtained. Although taking a partial derivative is not particularly hard,

problems arise due to the fact that equations quickly become extremely large (and sparse).

This in turn requires sophisticated symbolic simplifications to make the resulting equations

computationally tractable. Lagrange II is therefore often only used for relatively small systems,

or derived once for single models which are not subject to change.

Projected Newton Euler

The Projected Newton Euler method is in many ways an answer to the issues with the Lagrange

II method. Instead of computing the derivatives of energy functions, it is based on projecting

the Newton-Euler method into generalized coordinates. This avoids computation of expensive

partial derivatives while at the same time removing the explicit acceleration constraints that

are usually introduced in the standard Newton Euler method to model articulated joints. The

general equations of motion derived this way are shown in equations 2.31 and 2.32.

H(q) =
∑

i
(mi J T

Si
JSi + Ii J T

Ri
JRi ) (2.31)

C (q , q̇) =
∑

i
(mi J T

Si
J̇Si q̇ + Ii J T

Ri
J̇Ri q̇) (2.32)

Here JSi is the center of mass Jacobian of body i , JRi is the rotation Jacobian and Ii is the inertia

tensor. It may look as if this equations has not gained us much. After all, we appear to still be

required to obtain a large number of Jacobians (partial derivatives) and their derivatives. As it

turns out however, we can do away with explicitly computing all the Jacobians and instead use

recursive methods to implicitly construct them, making this a very computationally efficient

method. Almost all software packages which explicitly derive equations of motion are based

on a form of projected, recursive Newton Euler.

The derivation of the equations of motion in cȯdγn are based on Featherstone’s method

(Featherstone, 2008), which is widely regarded as the current state of the art method. The

remainder of the section will describe in detail how this method is implemented in cȯdγn,

how joint models can be defined and forward dynamics derived, and finally how models

can be specified in the cȯdγn language. Note that unless otherwise noted, formulations and

equations are adapted from (Featherstone, 2008) and provided for completeness.

2.6.3 Spatial vector algebra

To be able to follow the algorithms in this section, it is necessary to briefly introduce spatial

vector algebra, which is used in the formulation of the equations of motion. In spatial vector

algebra, motions and forces are expressed in 6D, and it defines the appropriate spatial opera-

tions. It usually is more common to express the linear and angular dynamics separately, leading

to writing equations in 3D spaces. Instead, spatial vector algebra allows to write equations for
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both linear and angular dynamics at the same time. Although considered less intuitive, once

one grasps the elementary concepts, the resulting equations turn out to be much simpler.

Spatial motion vector

A spatial motion vector, v̂ is a vector spanning the 6D motion space, i.e. it is an element of M 6

(the vector space of spatial motion vectors). Although it is possible to choose any vector basis

which spans the correct space, the most straightforward choice is to use Plücker coordinates,

resulting in v̂ = [ωx ,ωy ,ωz , vOx , vOy , vOz ]T . Here ωx , ωy and ωz are angular velocities around

the coordinate axis unit vectors. Correspondingly, vOx , vOy and vOz are the linear velocities

at the origin of the coordinate frame, along its principal axis. Note that we use the same

convention as in (Featherstone, 2008), placing angular velocities first, then linear velocities.

This choice is arbitrary as long as it is used consistently and different conventions are in use.

Spatial force vector

Similar to spatial motion vectors, a spatial force vector, f̂ spans F 6, the vector space of spatial

force vectors. Again choosing the basis vectors for Plücker coordinates, we obtain the spatial

force vector as f̂ = [nOx ,nOy ,nOz , fx , fy , fz ]T with nOx , nOy and nOz being forces resulting in

rotation (e.g. torques) and fx , fy , fz being linear forces along the unit axes of the frame. Note

that F 6 is the vector dual space of M 6 and vice versa.

Spatial transformations

A general transformation (rotations and translations) of a spatial motion vector can be done

using a spatial transformation matrix. If we define two coordinate frames A and B , then the

transformation B X A of a spatial motion vector Am (in A coordinates) from frame A to frame B

is given by:

B m = B X A
Am (2.33)

B X A =
[

E 0

0 E

][
I 0

−r× I

]
=

[
E 0

−Er× E

]
(2.34)

Here, E is a 3-by-3 rotation matrix, I is a 3-by-3 identity matrix, 0 is a 3-by-3 zero matrix and r

is a 3-by-1 translation vector. r× denotes the skew symmetric matrix of r , which is defined as:

r×=




rx

ry

rz


=




0 −rz ry

rz 0 −rx

−ry rx 0


 (2.35)

It is useful to understand the meaning of the skew symmetric matrix as the matrix form of the
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cross product. Additionally, recall that the linear velocity dr
dt of a vector r resulting from an

angular velocityω is given by:

dr

dt
=ω× r (2.36)

This can be extended to spatial vectors. The derivative operator for a motion vector m̂ given a

spatial velocity v̂ then is v̂ ×m̂, with

v̂×=
[
ω

vO

]
×=

[
ω× 03×3

vO× ω×

]
(2.37)

Similarly, the derivate operation for a spatial force f̂ by a spatial velocity v̂ is v̂ ×∗ f̂ , with

v̂×∗ =
[
ω

vO

]
×∗ =

[
ω× vO×

03×3 ω×

]
=−(v̂×)T (2.38)

(2.39)

Spatial inertia

The spatial inertia of a rigid body defines how the spatial velocity of that body relates to its

spatial momentum, and the relationship is given by

h = I v , (2.40)

with h the spatial momentum and I the spatial inertia. Without going into the derivation, the

spatial inertia I is defined by the mass m of the rigid body, its center of mass c and finally its

Cartesian inertia tensor IC at c . The resulting spatial inertia can be obtained by:

I =
[

IC +mc ×c×T mc×
mc×T mI 3×3

]
(2.41)

Spatial acceleration

The spatial acceleration of a body is simply the derivative of the spatial velocity.

â = d

dt
v̂ = d

dt

[
ω

vO

]
=

[
ω̇

r̈ −ω× ṙ

]
, (2.42)

with r̈ the linear acceleration and ω̇ the angular acceleration of the body.
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Spatial operations

There are some other useful operations on spatial vectors and spatial transformations. A

summary of these operations is given in table 2.8.

Table 2.8 – Commonly used spatial operations

Quantity Expression

General transform

Translation r
Rotation E

B X A

[
E 0
0 E

][
I 0

−r× I

]
=

[
E 0

−Er× E

]

Spatial inverse A XB = B X A
−1 =

[
E T 0

(−Er×)T E T

]

Spatial translation Xtr(r ) =
[

I 0
−r× I

]

Spatial rotation Xrotx,y,z (θ) =
[

Ex,y,z (θ) 0
0 Ex,y,z (θ)

]

Ex (θ) =



1 0 0
0 c(θ) s(θ)
0 −s(θ) c(θ)


 , E y (θ) =




c(θ) 0 −s(θ)
0 1 0

s(θ) 0 c(θ)


 , Ez (θ) =




c(θ) s(θ) 0
−s(θ) c(θ) 0

0 0 1




Spatial quaternion Xquat(q) =
[

Eq (q) 0
0 Eq (q)

]

Eq (q) = 2




q2
1 +q2

2 −0.5 q2q3 +q4q1 q2q4 −q3q1

q2q3 −q4q1 q2
1 +q2

3 −0.5 q3q4 +q2q1

q2q4 +q3q1 q3q4 −q2q1 q2
1 +q2

4 −0.5




Affine transform B TA =
[

E −Er
0 I

]

Extract E Xrot3(X ) =



X11 X12 X13

X21 X22 X23

X31 X32 X33




Extract −Er Xtr3(X ) =−




X5,1...3 E T
1...3,3

X6,1...3 E T
1...3,1

X4,1...3 E T
1...3,2




Transform point XtrP(X , p) = Xrot3(X ) ·p +Xtr3(X )
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2.6.4 Joint models

A joint represents a kinematic constraint by which two bodies are joined together. If we can

define this kinematic constraint in a general manner and express its velocities and accelera-

tions that are transmitted from one body to the next over the joint, then we can easily model

any type of joint (e.g. revolute, prismatic, cylindrical or spherical).

Let vi be the spatial velocity of body i and vλ(i ) be the velocity of the parent (λi ) of body i , i.e.

the body to which the joint connects body i . The velocity across the joint, v Ji , is then simply

v Ji = vi −vλ(i ) (2.43)

Equivalently, the joint velocity can be expressed as a function of the generalized velocity of

that joint by

v Ji (q̇) = Si q̇ (2.44)

Here Si is called the joint motion subspace, which is a matrix projecting the generalized velocity

q̇ to a spatial velocity and is specific to a particular joint type. Note that if we have defined

v Ji (q̇), then we can obtain the corresponding motion subspace by

Si =
∂v Ji

∂q̇
(2.45)

If the motion subspace not only depends on generalized velocities, but also generalized

coordinates, then it is necessary to compute a so-called bias velocity product

c Ji =
∂Si

q
q̇T q̇ (2.46)

The joint motion subspace also projects spatial forces, by means of

τi = ST
i f Ji (2.47)

To obtain the spatial joint acceleration, we can simply differentiate the spatial velocity to

obtain

a Ji = v̇ Ji = Ṡ q̇ +Sq̈ (2.48)

Apart from projecting generalized velocities to spatial velocities, a joint model also determines

how generalized coordinates q project to spatial transformations. The spatial transformation

induced by the joint generalized coordinates is X Ji (q) and is defined by the type of the joint. For

example, a revolute joint on the X axis would define X Ji = Xrotx (q). Lastly, the transformation

that locates the origin of the joint in its parent frame is notated by XTi , and is part of a specific

model structure. The full transformation that locates the parent frame into the child frame is
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therefore given by

i Xλ(i ) = X Ji XTi (2.49)

There are thus two entities that completely define any type of joint, its motion subspace, Si

and its joint transform X Ji .

Joint models in cȯdγn

cȯdγn does not model the physical bodies separately from the constraints imposed by joints

connecting bodies together. Instead, it defines each physical body and its degrees of freedom,

relative to its parent, in the same node. This approach is a result of the specific RBD algorithms

used, in which this representation is natural. By doing so, a kinematic tree can be easily defined

hierarchically with a minimal amount of nodes.

The general structure of a physical body, plus joint, in cȯdγn is provided in Model 2.16.

cȯdγn model 2.16 – General physical body and joint definition

templates {
node "body" {

q = 0
dq = 0
τ = 0

m = 1
com = "[0; 0; 0]"

I = "eye(3)"

spI = "Spatial.Inertia(com , m, I)"

node "joint" {
JointTransform(q) = "eye(6)"
JointVelocity(q, dq) = "zeros(6, 1)"

MotionSubspace(q, dq) = "∂[JointVelocity; dq](q, dq)"

BiasVelocityProduct(q, dq) = "∂[MotionSubspace; q](q, dq) ∗ dqT ∗ dq"
}

tr = "[0; 0; 0]"
coordinateTransform = "Spatial.Translation(tr)"

transform = "JointTransform(q) ∗ coordinateTransform"

velocity = "JointVelocity(q, dq)"
acceleration = "transform ∗ [0; 0; 0; −g] + BiasVelocityProduct(q, dq)"

baseToLocalTransform = "transform"
localToBaseTransform = "Spatial.Inverse(baseToLocalTransform)"

}
}

The quantities that are specific to a particular model and need to be defined are the mass

m, center of mass com, inertia tensor I. Furthermore, the coordinateTransform (XT ), locating

the body origin in its parent frame, should be supplied. Finally, specific joint types need to
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define two functions, the JointTransform (X Ji ) and the JointVelocity (v J ). In practice, it is

often easier to derive the JointVelocity function than to derive directly the MotionSubspace.

Here we can see that the symbolic partial derivative functionality in cȯdγn can be used to

automatically derive the correct joint MotionSubpace from a given JointVelocity, and also

derives the BiasVelocityProduct automatically from the obtained MotionSubspace.

The velocity and acceleration define the body’s spatial velocity and acceleration and are

initially defined for the body having the fixed inertial frame as its parent (i.e. it is the root in

the kinematic tree). In this case, the velocity of the body is simply its JointVelocity and the

acceleration is the projected acceleration plus the bias velocity product. Note that acceler-

ation due to gravity can be modeled as an external force as well, but it is easier to project it

directly to the root acceleration of the system. This is exactly equivalent due to the fact that

gravity can be seen as a constant linear acceleration.

Joint types

cȯdγn provides a variety of standard joint types in its standard library. Model 2.17 defines the

most important ones, including revolute, prismatic, planar, spherical and floating joints. As

can be seen, it is very easy to model different types of joints. Users can therefore also easily

define their own joint types, directly using the cȯdγn language.

Two joint types are of particular interest, the spherical and float joints. Both are imple-

mented using quaternions to represent the rotational degrees of freedom. Although it is more

straightforward to represent the rotational degrees of freedom using Euler rotations (i.e. three

variables, one for each rotation), singularities cannot be avoided in general. Quaternions do

not suffer from this problem, however they do have their own. First of all, quaternion rotations

are realized through the use of unit quaternions and it is important that they stay normalized.

Due to numerical errors, the quaternion will tend to drift slowly over time. Fortunately, nor-

malization can be easily achieved in cȯdγn through the use of variable constraint expressions.

These expressions can be associated with any variable and provide an easy way to restrict

variables to a certain domain, or in this case normalize them. The spherical and float joints in

model 2.17 show the use of these variable constraint expression in their definition of q .

The other difficulty about representing rotations by quaternions is that quaternions require

4 (constraint) generalized coordinates, but only 3 generalized velocities, i.e. the number of

generalized coordinates is not equal to the number of generalized velocities. Again, in cȯdγn

this is not an issue, since differential equations can be specified separately. It is therefore

only a matter of expressing the differential equation of the generalized coordinates q as the

quaternion derivative of the generalized velocities

q̇ = 1

2



−q1 −q2 −q3

q3 q0 q1

q2 q1 q0


dq (2.50)
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cȯdγn model 2.17 – Various available joint types [play]

node "revolute{X,Y,Z}" : physics.body {
node "joint" {

axis = ["[1; 0; 0]", "[0; 1; 0]", "[0; 0; 1]"]

JointVelocity(q, dq) = "[axis ∗ dq; 0; 0; 0]"
JointTransform(q) = "Spatial.Rotation@@@1(q)"

}
}

node "prismatic{X,Y,Z}" : physics.body {
node "joint" {

axis = ["[1; 0; 0]", "[0; 1; 0]", "[0; 0; 1]"]

JointVelocity(q, dq) = "[0; 0; 0; axis ∗ dq]"
JointTransform(q) = "Spatial.Translation(axis ∗ q)"

}
}

node "planarY" : physics.body {
node "joint" {

JointVelocity(q, dq) = "[0; dq[0]; 0; 0; dq[1]; dq[2]]"
JointTransform(q) = "Spatial.Translation ([0; q[1]; q[2]) ∗ Spatial.

RotationY(q[0])"
}

}

node "spherical" : physics.body {
node "joint" {

JointVelocity(q, dq) = "[dq; 0; 0; 0]"
JointTransform(q) = "Spatial.Quaternion(q)"

}

q = "[1; 0; 0; 0]" ("q / sqsum(q)")

dqdot = "0.5 ∗ [−q[1], −q[2], −q[3];
q[3], q[0], −q[1];

−q[2], q[1], q[0]] ∗ dq"
}

node "float" : physics.body {
node "joint" {

JointVelocity(q, dq) = "dq"
JointTransform(q) = "Spatial.Translation(q[4:7]) ∗ Spatial.Quaternion(q

[0:4])"
}

q = "[1; 0; 0; 0; 0; 0; 0]" ("[q[0:4] / sqsum(q[0:4]); q[4:7]]")

dqdot = "[0.5 ∗ [−q[1], −q[2], −q[3];
q[3], q[0], −q[1];

−q[2], q[1], q[0]] ∗ dq [0:3];
dq[3:6] + Spatial.Cross(q[4:7], dq [0:3])"

}

Similarly, a special floating base joint allows for efficient modeling of a system with a floating

base (e.g. a legged robot). It uses a quaternion representation for the rotation and 3 additional

generalized coordinates for the translation. Floating bases are more commonly modeled by

stacking massless revolute and prismatic joints, which can lead to instabilities and inefficien-
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cies.

2.6.5 Model definition

Having defined joint models for various types of joints, we can now define rigid body models

in cȯdγn. Model 2.18 shows how a relatively simple N-pendulum model can be defined. First

all bodies in the system are defined, in this case of joint type revoluteY. Then, the structure (or

connectivity) of the system is defined by defining physics.joint edges between physical body

nodes. As can be seen, the resulting model is not structured explicitly as a tree, which would

result in deeply nested nodes. Instead, a flat structure is preferable, separating kinematic

structure from model structure creating a comprehensible and succinct model representation.

−2 0 2 4 6 8 10 12 14 16 18 20 22

0

0.5

Time (s)

A
n

gl
e

(◦
)

Figure 2.13 – System output of a rigid body dynamics simulation of a chain of 5 pendulums.
The first pendulum starts out at an angle and starts accelerating due to gravity. The system
is damped by a simple velocity based damping term on the generalized forces of each of the
pendulum joints.

2.6.6 Inverse dynamics

Having previously defined all required quantities that define a RBD model, it is now time to

turn to deriving the dynamics. We first start by deriving the inverse dynamics, i.e. determining

τ given q̈ , for the system. As we will see, we can actually use the same algorithm as part of

deriving the forward dynamics.

The inverse dynamics can be obtained using a spatial version of the Recursive Newton-Euler

Algorithm (RNEA). Given the quantities q , q̇ , q̈ and a given model specification (i.e. defining
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cȯdγn model 2.18 – Simple multi-pendulum model definition [play]

# Includes the codyn physics templates for systems , bodies and
# joint models
include "physics/physics.cdn"

integrator {
method = "runge−kutta"

}

defines {
n = 5

}

# All models start by defining a node derived from the physics.system
# template
node "system" : physics.system {

# Inside the system , joints are defined by inheriting from any
# of the physics.joints.∗ templates. codyn provides a large number
# of general purpose joints.
node "p{1:@n}" : physics.joints.revoluteY {

# The center of mass
com = "[0; 0; −0.5]"

# The translation from the parent frame to the frame of
# this joint
tr = "[0; 0; −1]"

# The inertia tensor of the physical body on this joint
I = "Inertia.Box(m, 0.05, 0.05, 1)"

# Add some damping in the system on the generalized force
τ = "−20 ∗ dq"

}

# Override certain variables on the root joint.
node "p1" {

tr = "[0; 0; 0]"
q = "0.2 ∗ pi"

}

# Create edges between successive nodes inheriting from
# the physics.joint template. This chains joints together
# to form the articulated rigid body.
edge from "p{1:@n}" to "p$(@1 + 1)" : physics.joint {}

# The physics/model.cdn file should be included at the end of the
# model definition and constructs a "model" node containing global
# system quantities such as the center of mass and total mass. It is
# also responsible for constructing the required Jacobians if requested.
include "physics/model.cdn"

# The physics/dynamics.cdn file should be included last and constructs
# the equations necessary for forward simulation of the dynamics. It
# uses RNEA to construct C and CRBA to construct H in a new node called
# "dynamics ". It then derives generalized accelerations in dynamics.ddq
# which project back to the individual joints.
include "physics/dynamics.cdn"

}

Si , v Ji , c Ji and i Xλ(i )), we can compute τ recursively as follows:

vi = i Xλ(i )vλ(i ) +v Ji (2.51)

ai = i Xλ(i )aλ(i ) +Si q̈ +c Ji vi ×v Ji (2.52)

fi = Ii ai +vi ×∗ Ii vi − i X ∗
0 f x

i +
∑

j∈µ(i )

i X ∗
j f j (2.53)

τi = ST fi (2.54)
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Here i X0 is the spatial transform from base coordinates to i th body coordinates and f x
i are

any external forces acting on body i , in base coordinates. µ(i ) is the set of direct child bodies

of i (i.e. λ( j ) = i ). Each of these bodies projects its force fi to its parent through the spatial

force transform i X j .

Since cȯdγn is a declarative language, it is not possible to implement general algorithms. It is

however possible to directly define all the necessary quantities directly from their mathemati-

cal form, and let cȯdγn resolve the recursive relationship automatically. Recursive Newton

Euler can therefore be naturally described in cȯdγn, simply by directly translating the equa-

tions above. The procedure is as follows:

1. Add new variables force, forceChild and forceExternal to each physical body

2. Define force as per equation 2.53, using forceChild for forces projected from the chil-

dren of the body

3. Use edge projection to project velocity and acceleration from each parent to each

child

4. Use edge projection to project force from each child to their parents forceChild

2.6.7 Forward dynamics

If we look at the inverse dynamics using recursive Newton Euler, we can see that if we set q̈

to 0, then we are computing C (q , q̇) instead of τ. What we are left with is the computation of

H(q). A reasonable algorithm to compute H(q) is called the Composite Rigid Body Algorithm

(CRBA). A spatial version of this algorithm recursively projects spatial inertia into H .

We start by computing the composite rigid body, spatial inertia using

Ici = Ii +
∑

j∈µ(i )

i X ∗
j Ic j

i X j , (2.55)

where Iic is the composite spatial inertia of body i in body i coordinates. It is simply the sum

of all body inertias below body i in the kinematic tree, projected into the coordinate system

of body i . Note the recursive definition which makes computation both efficient, as well as

suitable for implementation in cȯdγn.

Having obtained Ici , we can project the spatial inertia to H through the joint motion subspace

as follows

Hi j = ST
j

j Fi (2.56)

H j i = H T
i j (2.57)

i Fi = Ici Si (2.58)
λ( j )Fi = λ( j )X ∗

j
j Fi , (2.59)
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equation 2.59 is of particular interest. It recursively computes the contribution of the compos-

ite spatial inertia from each body i , upwards to each parent j in the tree.

The procedure in cȯdγn to implement these equations is as follows:

1. Add new variables ICChild and IC for every body, where

IC = "spI + ICChild"

2. Declare edge projections to project IC from every child to its parent through

ICChild += "transformT ∗ IC ∗ transform"

3. Add new variables

iFi = "IC ∗ MotionSubspace(q, dq)"

Hii = "MotionSubspace(q, dq)T ∗i Fi"

4. For every body i , declare edge projections to project to each body j , on the path from i

to the base

jFi <= "transformT ∗ iFi"

5. For every body i , declare edge projections for every body j , on the path from i to the

base, towards H

Hij <= "MotionSubspace(q, dq)T ∗ jFi"

Hji <= "HijT "

Both the inverse and forward dynamics are implemented completely using only the declarative

language. This is important because the result is that we end up with a fully declarative model

of the derivation of the equations of motion. It is simply defined directly in terms of physical

quantities, leading to a very natural and efficient representation.

2.6.8 Jacobian

The Jacobian is an important quantity in rigid body dynamics, modeling, robotics and control

which we will need in chapter 5 for the modeling of wearable parallel structures. In rigid body

dynamics, the term Jacobian refers to a mapping between generalized velocities and Cartesian

velocities (in some frame). As such, it is the partial derivative of a Cartesian point x towards

generalized coordinates, i.e.

J (x(q)) =




∂x1

∂q1
· · · ∂x1

∂qn
...

. . .
...

∂xm

∂q1
· · · ∂xm

∂qn




(2.60)

Furthermore, recall that the total time derivative of xi (q) is given by

ẋi =
n∑

j

∂xi

∂q j
q̇ j (2.61)
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or

ẋ = J q̇ (2.62)

As mentioned before, it is actually not needed to compute the Jacobian by taking an actual

partial derivative. In fact, equation 2.62 should look familiar, we have already seen it before

when defining how joints transform a generalized velocity to a spatial velocity

vi = Si q̇i (2.63)

Since spatial velocities can be summed (as long as they are expressed in the same frame), we

can obtain a base Jacobian 0 J , mapping generalized velocities to base velocities, as follows

0 J =
[

0X0S0 · · · 0XnSn

]
(2.64)

We can obtain a Jacobian from a particular body i to the base, 0 Ji simply by selecting the

columns from 0 J corresponding to the generalized velocities of the bodies on the kinematic

path from body i to the base

0 Ji =
[

i ε0
0 J0 · · · i εn

0 Jn ,
]

(2.65)

where i ε j is 1 if body j is on the path from i to the base, or 0 otherwise. 0 Ji is a mapping from

generalized velocities to Cartesian velocities at the system origin. However, often one will want

to obtain the Jacobian relating velocities to those observed at a certain end-effector position.

Because the Jacobian is a mapping from generalized velocities to spatial velocities, we can eas-

ily transform it to a different coordinate frame simply by applying a spatial motion transform.

Therefore, to obtain the Jacobian at a certain end effector position 0r (in base coordinates),

we can apply a spatial motion translation:

0 Jir = Xtr (0r )0 Ji (2.66)

We can also easily obtain the Jacobian for a particular body in a different base. This type of

Jacobian describes the mapping of generalized velocities to relative velocities between two

bodies and is very useful in kinematics based control (for example, controlling the end of one

leg relatively to the end of another leg). Given the base Jacobian 0 J jr for a body j at a position
0r j and similarly the base Jacobian 0 Jir for a body i at a position 0ri , the Jacobian for j at 0r j

assuming the base i at 0ri is given by:

i J j = 0 J jr −Xtr (0r j − 0ri )0 Jir (2.67)

Finally, another important Jacobian to derive is the center of mass Jacobian. This Jacobian
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relates generalized velocities to center of mass velocities, and is another important quantity

for control (in particular for kinematics based balance control). Having calculated the center

of mass CoM by

CoM = 1

M

∑

i

(
mi XtrP (0Xi ,CoMi )

)
(2.68)

M =
∑

i
mi (2.69)

we can obtain the center of mass Jacobian CoM J in a similar way as the base Jacobian:

CoM J =
[

0X0Xtr (CoM)S0 · · · 0Xn Xtr (CoM)Sn

]
(2.70)

In cȯdγn, all these Jacobians are readily available. A Jacobian node can be defined inside any

physical body i , at a location ri inside the local frame of that body, resulting in the computation

of 0 Jri . It does so by first computing 0 J , the base Jacobian of the full system and then projecting

back the relevant subsections of 0 J to each required body Jacobian. The general procedure is

as follows:

1. Determine if any Jacobians need to be computed (i.e. are there any nodes with the

physics.jacobian template)

2. If so, create a new variable J0 in the system jacobian node, containing the base Jacobian
0 J computed by edge projecting columns of 0 J from each body in the system

3. Then, project back relevant columns of 0 J (i.e. those in the path from body i to the base,

the joints which contribute to velocities in i ) to each physics.jacobian node

Model 2.19 shows a basic usage of Jacobians in a cȯdγn model. The center of mass Jacobian is

also automatically available in all systems and can be obtained from jacobian.Jcom. Finally,

Jacobians can easily assume a different base using equation 2.67, made available conveniently

in a cȯdγn file which can be included inside a physical body node.

2.6.9 Closed loop dynamics

Whenever a kinematic structure closes on itself, the dynamics of that structure change signifi-

cantly. The mobility is defined as the degree of motion allowed by a certain structure. For a

non-closed kinematic tree, this is simply equal to the number of degrees of freedom. However,

whenever a structure closes on itself, it removes nc degrees of freedom, where nc depends on

the type of closing joint constraint. For example, consider a planar N -dof series manipulator

consisting of N revolute joints. If we close this structure from end point to base with another

revolute joint, we obtain a new system of only N −3 degrees of motion. Modeling of closed

loop dynamics is essential for the co-design of wearable robots presented in chapter 5.

To obtain the equations of motion for closed loop systems, there are generally two methods
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cȯdγn model 2.19 – Example usage of Jacobians [play]

node "system" : physics.system {
node "p{1:4}" : physics.joints.pendulumY {

tr = "[0; 0; −1]"
}

node "p4" {
node "jac" : physics.jacobian {

location = "[0; 0; −1]"
}

# Construct a jacobian for the center of mass Jacobian ,
# assuming the base in the p4 phsyical body. The resulting
# jacobian is available in JComInP4 and maps generalized
# velocities to velocities of the center of mass as observed
# from p4.jac.location
parse "physics/algorithms/rebase_jacobian.cdn" {

tipJacobian = "jacobian.Jcom"
tipLocation = "model.com"

base = "jac"
var = "JComInP4"

}
}

edge from "p{1:4}" to "p$(@1 + 1)" : physics.joint {}

# Processes all requested jacobians and creates corresponding
# edge projections to obtain (in this case) p4.jac.J, the body
# Jacobian of p4 at p4.jac.location
include "physics/model.cdn"

}

(Featherstone, 2008). The first method is to transform the system to obtain a new, reduced set

of generalized coordinates y . Given that y defines q uniquely, a function γ exists such that

q =γ(y). I.e. γ is the function that maps the reduced generalized coordinates y to the original

generalized coordinates q . Then, derive twice to obtain the same mapping for generalized

velocities and accelerations

q̇ = ∂γ

∂y
ẏ (2.71)

q̈ = ∂γ

∂y
ÿ +

(
∂γ

∂y

d

dt

)
ẏ (2.72)

The advantage of this method is that no explicit constraints have to be introduced into the

equations of motion, resulting in stable and accurate simulations. The main difficulty of this

approach is that it is not always possible to find a mapping function γwhich uniquely maps y

to q . More so, it is especially difficult to obtain γ automatically for general structures. Finally,

closed loop systems can loose degrees of freedom, for example in singular configurations.

When this happens, it might be necessary to change the set of independent coordinates y such

that the system is no longer singular in the choice of y . This would have to happen during

simulation and is an expensive, and complicated operation.
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The second method is more general and easier to use since it derives the equations of motion

for any closed system automatically. It does so by introducing acceleration constraints in

the original equations of motion. In the original equations of motion, there will be two new

generalized forces 1) τc , the unknown constraint forces which account for the kinematic

constraint imposed by the kinematic loop and 2) τa the known active forces exerted on the

loop joint (actuator forces, springs, dampers etc.). We can define the kinematic constraint

imposed by the loop joints in terms of joint acceleration by

K q̈ = k (2.73)

the same constraint imposes loop constraint forces by

τc = K Tλ (2.74)

and the new equations of motion will become

[
H K T

K 0

][
q̈

−λ

]
=

[
τ−C +τa

k

]
(2.75)

The objective is then to construct K and k , solve for the unknown Lagrange multiplierλ and

finally solve for the accelerations q̈ .

The motion that a loop constraint joint allows can be defined by a matrix T called the constraint

force subspace. It is the orthogonal complement of the joint motion subspace, i.e.

T = S⊥ (2.76)

and

T T S = 0 (2.77)

in other words, T projects generalized forces into the constraint force subspace. Note that

T can be any basis that spans the correct subspace and there is thus no unique choice of T .

An example of a possible choice for T for a revolute joint on the X axis (and corresponding

motion subspace S) is given in equation 2.78.

S =




1

0

0

0

0

0




, T =




0 0 0 0 0

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1




(2.78)
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Having defined T , we can see that a constraint imposed using T leads to

T T v J = 0 (2.79)

i.e. the velocity across the loop joint, projected through the constraint force subspace must be

0 (allow no motion). The loop joint velocity v J is simply the difference between the two spatial

velocities of the bodies the loop closes over. To obtain acceleration constraints, equation 2.79

can be differentiated, which after simplification (see Featherstone (2008) for details) results in:

T T
i j (Ji − J j )q̈ =−T T

i j (avp
i −avp

j )− Ṫ T
i j (vi −v j ) (2.80)

Here avp
i is the velocity product acceleration of joint i and is available as a by-product from

applying recursive Newton Euler. The body Jacobians Ji and J j do not need to be explicitly

derived, and can be obtained by projecting the motion subspaces of the two joints in the

correct frame of reference as explained in the previous section. We have thus obtained K and

k for the closed loop system.

To solve forλwe can write 2.75 equivalently as

Aλ= b (2.81)

A = K H−1K T (2.82)

b = k −K H−1(τ−C +τa ) (2.83)

and solve forλ. Note that A is not generally invertible (i.e.λ does not have a unique solution),

but the equation can still be solved (for example using the pseudo inverse). We can also avoid

the explicit computation of H−1. Based on the method proposed in (Featherstone, 2008), we

use an LT DL decomposition of H to write

H = LT DL (2.84)

H−1 = (LT DL)−1

= L−1D−1L−T (2.85)

A = K L−1D−1L−T K T

= Y T D−1Y (2.86)

Y = L−1K T (2.87)

b = k −Y T D−1L−T (τ−C +τa ) (2.88)

λ= A+b (2.89)
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Although this looks more complicated, the computation of L−1x , D−1x and D−1L−T x can be

performed efficiently using sparse methods adopted from (Featherstone, 2008).

Finally, having obtainedλ, we can solve for q̈ in

H q̈ =τ−C +τa +K Tλ (2.90)

The main disadvantage of this method is that due to numerical and integration errors, the

kinematic constraints tend to drift. To address this issue, a stabilizing force can be added to

the computation of k which tries to reduce errors appearing in this way. The resulting system

is less accurate and less stable, so care has to be taken when analyzing results obtained from

simulations in this way.

In cȯdγn, loop joints are defined by loop joint nodes. Several templates are provided for

different types of loop closing joints, specifying their corresponding constraint force matrices.

Loop joint edges then specify how a loop joint connects between two physical bodies in the

system.

The algorithms as outlined above are implemented in cȯdγn by overriding the computation of

the forward dynamics in case of loop closing joints. If any loop closing joints are found, the

additional required equations are automatically added based on the closing loop joint types.

Example 1: loop closure to fixed base

The first example is a model of a simple parallel structure which closes on the fixed base.

Model 2.20 shows the cȯdγn model for this example. It defines 3 revolute joints and then closes

the last body on the fixed world using a physics.cjoints.revoluteY closing joint. As can be

seen in the model, creating a closed loop system is very simple and does not require other

modifications to the original, non closed system.

Figure 2.14 shows the output and a schematic representation of the system. Note that the

original system has 3 degrees of freedom, but the resulting closed system has only one. This

can be easily seen in the output of the system since the motions can be described by one

variable (oscillations at the same amplitude, phase and frequency). A video of the resulting

simulation can be found on the cȯdγn website.

Example 2: Pantographic leg

While the previous example was closed on the fixed base, the next example models a parallel

structure of a pantographic leg (or 4 bar parallel mechanism). The schematic representation

of such a structure is shown in figure 2.15 on the left. The original system has 4 degrees of

freedom. After adding the closing loop constraint, the system reduces to 2 degrees of freedom.
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cȯdγn model 2.20 – Example of a loop closing joint [play]

include "physics/physics.cdn"
include "physics/cjoints.cdn"

integrator {
method = "runge−kutta"

}

defines {
offset = "0.2 ∗ pi"

}

node "system" : physics.system {
node "p{1:3}" : physics.joints.revoluteY {

tr = "[0; 0; −1]"
com = "[0; 0; −0.5]"

I = "Inertia.Box(m, 0.05, 0.05, 1)"
}

node "p1" {
tr = "[0; 0; 0]"
q = "−@offset"

}

node "p{2:3}" {
q = ["0.5 ∗ pi + @offset", "0.5 ∗ pi − @offset"]

}

edge from "p{1:3}" to "p$(@1 + 1)" : physics.joint {}

# Create a closing joint node
node "pcl" : physics.cjoints.revoluteY {

tr = "[0; 0; −1]"
}

# Connect the last body (p3) to the closing loop joint
edge from "p3" to "pcl" : physics.cjoint {}

include "physics/model.cdn"
include "physics/dynamics.cdn"

}

The model is provided in model 2.21. It is similar to the previous closed model, except that the

closing joint, cl, now closes back on the hip instead of the fixed base. In the model, a small

damping force is added on the hip and a small spring force is added on the knee joint. The

output of this system when simulated is shown in figure 2.15 on the right. The knee stiffness

causes high frequent oscillations in the knee joint due to initial movement of the hip (due to

gravity). The hip joint shows a damped oscillatory movement until the system comes to a rest.

A video of the resulting simulation can be found on the cȯdγn website.

2.6.10 Contact modeling

The contact model is an essential component of a general purpose simulator, in particular if

used for the study of locomotion. Contact dynamics is a hard problem and has a whole field
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Figure 2.14 – Left: a schematic representation of a closed loop system of one degree. The
original system consists of 3 revolute joints and is closed to the fixed base through p4. Right:
Output of the simulated system. The resulting joint angle motions are consistent with the
imposed constraint and can be described by a single variable.
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Figure 2.15 – Left: a schematic representation of the leg. The open loop system consists of 4
revolute joints, hip, knee, ankle and par. A closing joint, cl, creates a pantographic structure
having only 2 degrees of freedom. Right: output of simulating the system. A damping force
acts on the hip and a spring force acts on the knee, causing quick oscillations.

of research dedicated to it. Here we only briefly discuss the two most common methods and

their implementation in cȯdγn.

For rigid body dynamics, there are generally speaking two approaches to modeling contacts

(Featherstone, 2008), both of which are implemented in cȯdγn. The first, and reasonably

straightforward, way is to model contact points by means of stiff spring/damper systems, and

is referred to as soft contact modeling, or the penalty method for contact modeling. Basically,

whenever there is a penetration between two surfaces, a virtual spring and damper exerts
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force on the penetrating bodies in the direction of their normal and tangential directions.

cȯdγn provides a basic implementation of soft contacts with basic Coulomb friction. It uses

cȯdγn’s event system to determine the timing of contact activation and deactivation, as well

as to determine when a contact switches between stick and slip (depending on the friction

coefficient). It does so by allowing the insertion of contact points in physical bodies. Whenever

a contact point penetrates a contacting surface, contact forces are exerted as external forces

on the corresponding physical bodies. The procedure is generally as follows:

1. Each contact can be in one of three states, inactive, active or slipping.

2. A contact point transitions from inactive to active whenever it penetrates a contacting

surface

3. In the active state, a surface normal contact force is applied as the external force of the

body in which the contact is embedded. This force is computed by

f = K∆p −Dṗ (2.91)

, with K the contact normal stiffness, ∆p the penetration depth, D the contact normal

damping and ṗ the penetration velocity. The tangential (friction) force is computed in

the same way, but tangentially to the contact surface.

4. The active state transitions to the slipping state when the tangential friction force

exceeds the normal force times the friction coefficient.

5. When either in active or slipping state, the contact point can transition to the inactive

state when contact between the two is broken (i.e. no longer penetrating).

The name penalty method refers to the fact that a contact reaction force only appears when

there is a non-zero penetration, thus only when the contact constraint has already been

violated. To make the system behave reasonably, the contact model needs to be very stiff,

leading to issues in numerical integration. Soft contact models are relatively easy to implement,

but very hard to tune. The spring and damper constants need to be finely tuned on a per

model basis, depend on the number of contacts and even depend on the type of desired

dynamic behavior of the system (for example walking and running might require different

contact model constants). Soft contact models can often be the cause of instabilities, non-

physical behavior and inaccuracies during simulation, in particular when using non-adaptive

numerical integration methods. This method is used in section 4.1 of chapter 4.

The second method for contact modeling is called hard contact modeling. Hard contact models

work by considering contacts as inequality constraints in the equations of motion. This leads

to a hybrid definition of the equations of motion, such that the dynamics of the system are no

longer defined by a single model. Effectively, hard contact models switch between different

dynamical models of the system and any combination of active and inactive contacts leads to

new dynamics. They are considerably harder to implement and are computationally much
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more expensive, but at the same time more accurate and more stable than soft contact models.

In addition to switching between different dynamic models, impulse dynamics have to be

propagated through the system at the time of contact, before switching to the new dynamics.

This method is used in section 4.2 of chapter 4 and in chapter 5.

cȯdγn provides a basic hard contact model by utilizing the event system for opening and

closing contact resolution and the closed loop dynamics developed in the previous section to

implement the equality constraints imposed by active contacts.

Contact activation, impulse dynamics

When a contact point becomes active, an impulse has to be propagated through the system,

such that the point of contact is at rest. Considering r the contact point, ṙ the contact point

velocity and Jr the contact Jacobian, we require that the system after impulse is consistent

with the following constraint:

ṙ = Jr q̇+ = 0 (2.92)

i.e. we require a new state for the joint velocities, q̇+, such that the contact point velocity ṙ

is zero. To calculate the effect of the impulse on the joint velocities, we can use the inertia-

weighted pseudo inverse of the contact Jacobian, also known as the dynamically-consistent

generalized inverse of the Jacobian (Khatib, 1987).

J̄r = H−1 J T
r Λr (2.93)

Λr = (Jr H−1 J T
r )−1 (2.94)

and we have

q̇+ = J̄r ṙ (2.95)

Note that this is the unique solution which minimizes q̇ T H q̇ . In cȯdγn contact activation/de-

activation is modeled using events. This means that there is no global resolution of all contacts

which are activated and deactivated. Rather, contacts are handled locally and sequentially. To

account for constraints imposed by currently active contacts, we use an extended Jacobian,
+Jr which incorporates the active contact constraints:

+Jr =
[

Jr

K

]
(2.96)

Doing so ensures the propagation of the impulse dynamics is consistent with the constraints

imposed by the active contacts.

We thus obtain a new velocity state of the system. This causes a discrete change in generalized
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velocities as a result of the contact becoming active. In cȯdγn we compute this new state each

time when a hard contact becomes active, i.e. when the event fires, and update new joint

velocities accordingly.

Loss of contact

Whenever the constraint force which keeps the contact constraint active becomes negative,

the contact is made inactive and there is a loss of contact. To obtain the contact force, recall

from equation 2.81 that we solve for the Lagrange multipliers, λ. In this case, the λ solved

for represent the physical force required to keep the constraint. Due to the formulation of

K , Tλ represents the constraint force in the body frame. We can then use a spatial force

transformation to obtain the contact force in the frame of the contacting surface normal.

cȯdγn does not solve the linear complementary problem (LCP) when a contact becomes

inactive, instead relying on sequential resolution of contact activation and deactivation from

the event system. Although this is generally speaking inaccurate and can lead to jitter between

contact points, we empirically found the approximation reasonable for systems with a small

number of contacts, such as humanoid or quadrupedal models.

2.6.11 Visualization

cȯdγn does not provide any visualization of rigid body models by itself. Nevertheless, it is

often very useful to be able to visualize the resulting 3D structure of a model. Problems in a

model can be easier to find by simple visual inspection, and visualizing a resulting movement,

instead of looking at joint angles, gives a much more intuitive representation of the system.

To aid in the design and inspection of rigid body models, cȯdγn integrates with the open

source 3D studio, Blender. cȯdγn rigid body models can be imported directly from the cȯdγn

model file. Furthermore, cȯdγn integrates with the Blender game engine to provide visualized

forward simulation of the system at interactive rates.

2.7 Performance

It has been stressed a few times that cȯdγn aims for high performance and that it has a good

conceptual model to this end. In this section we will see how it achieves this goal.

2.7.1 libcodyn

Until now, nothing has been said about the implementation of the execution engine in cȯdγn.

The core library, libcodyn, is responsible for model parsing and evaluation. It does so by imple-

menting a special purpose, stack based Virtual Machine specifically targeted for numerical

computation. Mathematical expressions are compiled to low level instructions which are
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Figure 2.16 – Screenshot of cȯdγn integration in blender. It shows a rendering of the closed
loop system presented in model 2.21. Models can be directly imported from cȯdγn files and
simulated using the Blender game engine.

then interpreted during execution. There are a few reasons that make the implementation

relatively simple. Firstly, the only values cȯdγn math knows or cares about are floating point

numbers and the stack is therefore simply a continuous array of floating point numbers. Sec-

ondly, cȯdγn has been designed with a dimension invariable runtime. This means that all

instructions, expressions, variables and functions have a known and invariable size during

execution. This in turn means that stack sizes are known beforehand and all required memory

can be preallocated.

Although the libcodyn implementation is certainly not slow, it is also definitely not yet high

performance. This becomes apparent especially when simulating large systems. Not only does

it need to execute a virtual language, instead of native instructions, it also:

– Copies more memory than required due to each expression having its own stack

– Cannot use special purpose vectorization instructions (i.e. SIMD)

– Cannot optimize loops or memory access

– Cannot inline function calls

– Executes any and all instructions, even if not necessarily required

There is one advantage of the Virtual Machine implementation though. Because it does not do

any optimizations, it can begin execution directly, without any overhead from a compilation

stage. It is therefore perfectly suitable for quick experimentation, even for larger systems. Of
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course, there is no particular reason why libcodyn could not implement a more sophisticated

execution engine, but implementing one is far from a trivial task, especially without loss of

expressiveness in the language.

To compare the performance, we did a simple experiment simulating a coupled network of

20 amplitude controlled phase oscillators. We compare the performance of matlab (using a

vectorized implementation) and standard libcodyn (using an implementation with nodes

and edges, i.e. devectorized). Both in Matlab and libcodyn we use a Runge Kutta integrator of

order 4 and simulate the differential equations for 10 seconds with a timestep of 1 millisecond.

Simulating this system in Matlab (2014a) takes approximately 3.9 seconds while libcodyn (3.6)

simulates it in approximately 3.3 seconds.

This shows that libcodyn is sufficient to simulate these type of differential equations with a

performance very similar to that of Matlab. Furthermore, libcodyn can simulate up to 50 of

such oscillators in real time (with full coupling) on a very moderate system, which makes it

suitable for a large variety of applications.

Although this performance is sufficient for oscillator systems (which are arguably relatively

simple computationally), this is not the case for larger and more complex systems such as the

rigid body dynamics.

2.7.2 The road towards performance

There were two main motivations to address the issue of performance. The first and obvious

motivation was simply that the rigid body dynamics simulations were not competitive in terms

of simulation speed. This is especially problematic when using evolutionary optimization

strategies or other population based optimization methods. These rely on large numbers of

simulations to be performed and a simulator which is 10 times slower means 10 times fewer

experiments.

Secondly, cȯdγn has a specific goal to run on embedded systems, such as hard real time

constrained systems, but also micro-controllers and other micro systems with a very limited

amount of resources (but capable of floating point arithmetic). Clearly, it is not possible to run

any kind of high level virtual machine or libraries designed to run on consumer hardware on

such platforms.

To deliver on the claims made, the cȯdγn framework provides a sophisticated tool which

translates, without loss of functionality nor conceptual compromises, high level cȯdγn models

into a representation which is:

– Low level

– Dependency free

– Real time ready

– Micro-controller compatible
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2.7.3 As raw as C

The goal is to generate code that can run on low level or embedded systems with efficiency

close to that of hand written code. It is possible to implement an actual compiler to translate

directly into native instructions, but the amount of work involved in doing so would be a

gigantic task and would likely not result in anything near the performance of what existing

compilers produce.

Instead, cȯdγn models are translated into C, which is the most widely supported and low-level

language currently available. Since this should result in raw performance, the tool has been

aptly named rawc. Code generation is split into 5 stages:

1. Model destructuring

2. Sparsity analysis

3. Structure recovery

4. Dependency resolution

5. Abstract program generation

6. Code generation

Stage 1: Model destructuring

The first stage concerns reading in the model and performing analysis on the structure of the

model. Because we are concerned about a low level implementation of the model, we can

actually throw away all of the structure imposed by the cȯdγn language such as the nodes

and edges. These concepts are required for the modeling methodology, but not for the actual

generated code.

We therefore start by extracting all expressions which necessarily need to be computed. These

include state variables, random values, differential equations and any dependencies of these

(such as other variables, user functions, etc.). We can do so by first compiling the model to the

virtual machine representation using libcodyn and then extracting all the generated virtual

instructions.

Data storage in the low-level generated code is a single big block of floating point numbers

called the DataTable. It contains storage for state variables, derivatives, delays, random num-

bers and any other intermediate values. Due to the fact that cȯdγn is a declarative language,

all computable expressions are in the form of value assignments. The output of the analysis

stage is then simply a list of DataTable assignments with pre-compiled virtual instructions.

Stage 2: Sparsity analysis

A very important step in generating efficient code is the sparsity analysis stage. Looking at the

rigid body dynamics, it is quite obvious that by writing all the equations using spatial vector

algebra, we cannot obtain efficient code directly. Quantities such as the motion subspace,
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force constraint subspace, spatial transformations and inertias are all sparse. The objective

is to automatically determine the sparsity of these quantities and generate code that only

computes values as necessary.

Because cȯdγn models are declared, the full model sparsity can be easily determined by

iterating over all expressions, accumulating sparsity information over mathematical operators

and functions, variable references, matrix and index operations, etc. It is important to note

that this would be generally impossible in general purpose languages, unless the user would

specifically indicate which expressions would be sparse.

Once the sparsity of all expressions is determined, a heuristic algorithm determines whether

or not it is worth to generate special purpose sparse code for a particular operation, based on

the number of sparse entries and number of reduced computations. If needed, instructions

are replaced with sparse variants containing the sparsity information of their operands. This

optimization leads to a huge increase in performance for simulating rigid body dynamics,

while preserving the ability to write the derivation of the equations of motion in its most

general form.

Stage 3: Structure recovery

There are two optimization criteria to take in mind when generating low level code. The first

is obviously to try and generate fast code, but the second is to try and generate small code.

Smaller code does not mean faster code, but it does mean a smaller memory footprint. This is

especially important for micro-controllers where code size is a very real constraint. This stage

of code generation is particularly concerned with generating small code and is essential for

the implementation of central pattern generators on micro-controller type hardware (such as

the Salamandra robotica II (Knüsel, 2013)).

After having destructured the model into simple pairs of {DataTable entry, expression}, we

can try to recover some structure as a means of generating smaller code. The structure being

recovered is that of common parametrized (sub)expressions. Two expressions are considered

common when they can be made equal by means of parametrization of sub-expressions

retrievable from the DataTable. To illustrate this, consider the following two assignments:

Si = Sa +Sb ∗cos(pi∗St ) (2.97)

S j = Sb ∗cos(St ∗5)+Sc (2.98)

where S is the DataTable, a, b, c and t are various elements in S and pi is a numerical constant.

First, expressions are transformed into a canonical form. This is essential because it results in

a unique representation of equivalent expressions, such that they can be compared in linear

time for equivalence. Canonicalization essentially orders operands of commutative binary

operators into a canonical order and canonicalizes equivalent operations (such as as unary
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minus and −1∗). The canonicalized expressions are:

Si = Sa +Sb ∗cos(pi∗St ) (2.99)

S j = Sc +Sb ∗cos(5∗St ) (2.100)

To determine if the two expressions have a common, parametrized form, we can simply

compare each individual instruction for parametrized equivalence. Two instructions are

equivalent if

1. The instructions are strictly equivalent, exact equality, and

2. The instructions can be parametrized, i.e. passed as a function argument. For example,

DataTable variables can be parametrized, but a binary operator cannot

During this procedure, value instructions (such as numerical constants) can be promoted to

be stored in the DataTable if this means the expressions can be made common. In the example

above this is what would happen, since pi and 5 are not equivalent, but can be promoted in

which case they can be parametrized. The resulting parametrized function which can compute

both expressions, and the transformed expressions are:

f (x1, x2) = x1 +Sb ∗cos(x2 ∗St ) (2.101)

Si = f (Sa ,Spi) (2.102)

S j = f (Sc ,S5) (2.103)

The reason for this common expression parametrization is two-fold. First, simply doing the

transformation to capture common expressions in functions already reduces code size. At the

same time, the compiler is still able to inline the function call if it decides to do so, i.e. there is

no loss of performance. Secondly, it allows for automatic de-vectorization and loop generation

of common expressions which drastically reduces code size.

Stage 4: Dependency resolution

To assist code generation, the next step is to generate a dependency graph of all the expressions

that need to be computed. The objective is, given a set of states that need to be computed, 1)

determine all required dependencies of those expressions (such as intermediate values) that

need to be computed as well, and 2) determine the order in which all these expressions need

to be computed.

Stage 5: Abstract program generation

Instead of directly generating C code, an abstract program is generated containing an abstract

version of the code. This is useful because it allows for the abstraction of the specific code

generator. Currently, the best supported code generator in rawc is the C code generator, but
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an experimental JavaScript exists as well.

Generating the program consists of separating computations into several stages of execution.

Generally speaking, computations are separated into:

– prepare: this sets the pre-initialized state of the network and should be called just before

init.

– init: initialize the network at time t = 0. This is called just after prepare. The separation

of the two allows for variables to be set externally in between prepare and init.

– diff : computes the differential equations.

– post: computes any values that need to be observable after a successful integration step.

The abstract program also contains abstract versions of event handling, management of

delayed expressions, updating of random values and user functions. Each time a set of ex-

pressions needs to be computed, its consecutive common (sub)expressions are automatically

embedded inside an abstract loop such that minimal code can be generated.

Stage 6: Code generation

The final stage is the actual code generation. This stage is relatively easy since all the hard

work has been done by generating the abstract program. What is left is to translate cȯdγn

instructions to C. Fortunately, the mathematical expressions in cȯdγn are not that different

from such expressions in C. Mathematical operations are translated to standard C implemen-

tations (where possible). Functions which are not supported in C (more specifically, in libm)

are provided by a small rawc math library. This library is included directly in the generated

code such that the C compiler can still inline these functions if it sees fit.

Micro-controllers do not always have all the required mathematical functions available, or

standard implementations might be inefficient. For example, it is not uncommon to use a

lookup table for functions such as sin and cos because their computations are expensive

and take variable time depending on their arguments. rawc allows any math function to be

overridden by user provided implementations.

The resulting code is generated in such a way that it can be compiled directly, without need

for configuration or any external dependencies. It should be noted that the generated code

currently only supports floating point arithmetic and is thus not suitable for micro-controllers

without an FPU (floating point unit), or enough power to emulate floating point instructions.

2.7.4 Performance comparison

We briefly compare the performance increase due to the use of rawc when compared to

libcodyn. We first look at our previous oscillator example. Recall that using libcodyn we were
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able to simulate up to 50 fully coupled oscillators in real-time. When we use rawc to generate

optimized code for this network the simulations run approximately 130 times faster than real-

time. The increase in performance does depend on the type of simulation, but it generating

optimized code can result in up to two orders of magnitude improved performance.

We continue to compare the performance of the RBD simulation in codyn with two popular

alternatives, Bullet and SimMechanics. We are mainly interested in practical time performance,

i.e. how much real-time does it take to simulate a system of N degrees of freedom for T seconds.

For each simulator, we measure how long it takes to simulate 5, 10, 20, 30, 40 and 50 degrees of

freedom when simulating for 30 simulated seconds. The degrees of freedom are configured

in a single, long chain of revolute joints, which is a worst-case system configuration for the

method used in codyn to solve for the equations of motion.

We tried to make the comparison fair, by choosing the same simulation time step (1 mil-

lisecond) for all simulators, using fixed time step integrators. Importantly, we did not spend

significant time trying to optimize for simulator settings. It may be possible that different

performance can be obtained for each simulator by carefully tuning various (possibly prob-

lem dependent) parameters. However, here we focus on standard settings for each simulator.

For SimMechanics, we used the Accelerated (i.e. compiled) model target with optimizations

turned on.

All simulations were performed on an iMac, 3.2 GHz Intel Core i3 with 4GB of 1333 MHz DDR3

memory. Furthermore, we used Bullet 2.82, Matlab 2013a and codyn 3.6. Numbers shown

here may vary depending on the platform and the version of the software used. Figure 2.17

shows the results of measuring performance of the four simulators. Here we can see that

standard codyn does not perform particularly well, being barely realtime with 5 DOFs. Bullet

and SimMechanics perform an order of magnitude better and show very similar performance.

However, when we use codyn rawc to generate optimized code, we can see that (in particular

for smaller systems), rawc outperforms both Bullet and SimMechanics by an order of mag-

nitude. Finally, both Bullet and SimMechanics scale better with increasing number of DOFs

when compared to codyn rawc, showing approximately similar performance for 40 DOFs and

better performance for larger systems.

As noted before, the single chain of joints is a worst-case for solving the equations of motion

using Recursive Newton Euler and the Composite Rigid Body algorithms. Whereas for both

Bullet and SimMechanics the performance is mostly invariant of the system configuration,

this is not so for codyn. In particular, performance of codyn depends largely on the number of

branches in the kinematic tree. Another important step for improved performance when using

rawc is the sparsity optimization stage (which is enabled by default). To illustrate to effect of

branching and the sparsity optimization, we performed a second benchmark comparing the

following four cases:

1. rawc with 1 branch and sparsity enabled
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Figure 2.17 – Simulation performance of Bullet, SimMechanics, codyn and rawc on systems
with increasing number of degrees of freedom. Simulations were performed for 30 simulated
seconds. The y-axis shows in logarithmic scale the real time it took for the simulations to finish.
As expected, codyn itself is an order of magnitude slower than both Bullet and SimMechanics
(which show similar performance). When using rawc to generate optimized code, we however
obtain another order of magnitude faster simulations, for systems up to 20 degrees of freedom
than Bullet or SimMechanics. Both Bullet and SimMechanics show better scaling properties
towards systems with a larger number of DOFs.

2. rawc with 1 branch and sparsity disabled

3. rawc with 5 branches and sparsity enabled

4. rawc with 5 branches and sparsity disabled

Note that case 1) corresponds to the case shown in figure 2.17. The degrees of freedom are

distributed over the 5 branches, meaning that for example for a system with a total of 10

DOFs, there are 5 chains of each 2 revolute joints. Figure 2.18 shows the results of running the

performance benchmark for each of the four cases. As can be seen, the difference between a

branching factor of 1 and 5 is again an order of magnitude. Finally, it is shown that the sparsity

optimization can significantly increase performance as expected.

2.8 Tools

The design of cȯdγn as a core library with an accessible API (application programming in-

terface) has enabled a rich tooling environment for analyzing, simulating and manipulating

cȯdγn models. Rather than an afterthought, cȯdγn has been designed from the start as an easy

to access core library enabling rich tooling. This is important because it allows third parties to
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Figure 2.18 – Performance of codyn rawc comparing different branching factors (1 and 5) and
the effect of sparsity optimization. bf 1 and bf 5 are respectively branching factors 1 and 5, and
sp/nsp indicates respectively sparsity optimized and not sparsity optimized. The first case (in
blue) is identical to the rawc case shown in figure 2.17. As shown, both the branching factor
and the sparsity optimization have a large impact on general performance.

easily extend and modify functionality in cȯdγn, adding additional analysis or automation

tools, and integrating cȯdγn in existing software frameworks.

2.8.1 Command line tools

cȯdγn comes packed with a multitude of command line tools to analyze, simulate and render

cȯdγn models. Additional tools are easy to develop externally since the underlying library has

been designed with tooling in mind. The most important tools are presented below.

– cdn-monitor: a tool to quickly simulate and monitor certain variables in the network.

The output is in the form of a simple tabular format which can be easily consumed by

other tools for further processing

– cdn-rawc: the previously described tool which transforms a network into a high perfor-

mance, real-time ready implementation without loss of functionality

– cdn-compile: a convenient tool to quickly compile and validate a network, providing

extensive error reporting

– cdn-render: a tool that outputs a graphical rendering of a network in a variety of

formats

– cdn-repl: a Read-Eval-Print-Loop interactive console for inspecting, evaluating and

quick plotting of cȯdγn models
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2.8.2 Graphical designer interface

Besides being a framework for high performance simulation of coupled dynamical systems,

cȯdγn is also meant to be an educational platform. To introduce students to dynamical systems

modeling and numerical integration, a graphical user interface is provided in which cȯdγn

models can be constructed and inspected graphically. Furthermore, models can be directly

simulated while monitoring variables. It provides a great way to experiment with simple

models and explore the effect of model parameters, without the need to dive into the cȯdγn

language. Figure 2.19 shows the basic graphical interface.

Figure 2.19 – Screenshot of the cȯdγn graphical user interface. The canvas represents the
cȯdγn network and can be interacted with to create and modify nodes and edges. Variables
can be added, removed and inspected in the bottom panel.

2.8.3 Supported languages

The core cȯdγn library is written in C. Although a higher level language would have made

implementation of the feature rich cȯdγn platform easier, using C has been a conscious

choice. Doing so has enabled cȯdγn tools to be written in a variety of different higher level

languages since it is relatively straightforward to consume C based software libraries from

other programming languages. cȯdγn is installed with excellent support for the popular Python

and C# languages, which makes building tools on top of the core cȯdγn library very easy. Much

of the more complicated tooling, such as the code generator (cdn-rawc) and the graphical
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designer interface have been written using the C# language support from cȯdγn.

2.9 Availability

Development of cȯdγn uses the git version control system running on the cȯdγn server. All

sources can be directly viewed and obtained from the git server running at http://git.codyn.

net/. Regular releases of all software in the form of tarballs is also available for download at

http://download.codyn.net/releases/.

There are two important factors that determine whether or not a software framework is

easy to adopt. The first is the availability of documentation, manuals and tutorials. Without

proper documentation, it is difficult to use any reasonably complex software framework. All

documentation for cȯdγn is available on the website. The second major factor is how low the

barrier of entry is to get started. cȯdγn has full support for the GNU/Linux and OS X platforms.

Packages for Ubuntu i386/x86_64 and OS X (>= 10.6) are available for download from the

website (http://www.codyn.net/download.html) and provide all libraries and tools without

the need for manual compilation or installation.

To lower the barrier even further, a simple online playground is available on the cȯdγn server

allowing users to try out a limited version of cȯdγn directly from the browser at http://play.

codyn.net/. All examples given in this chapter are available on this playground to try out and

observe. Figure 2.20 shows a screenshot of the online playground.

Figure 2.20 – Screenshot of the cȯdγn online playground. The panel on the left shows the
cȯdγn declarative language. A rendering of the structure of the current network is shown in
the bottom right panel. Once simulated, resulting signals are automatically plotted in the top
right panel for inspection. The cȯdγn network can be downloaded or easily shared online by
obtaining a permalink to the playground document.
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2.10 Conclusion

In this chapter we have presented a novel and open methodology for the design and modeling

of coupled dynamical systems. The representation chosen by cȯdγn leads to a natural model-

ing structure of many types of dynamical systems, including coupled oscillators (e.g. central

pattern generators) but also rigid body dynamics. A complete, state of the art implementation

of Featherstone (2008) is provided, including various joint models, forward/inverse dynamics,

contact modeling and closed loop dynamics. Importantly, there is no dedicated RBD engine

in cȯdγn, and everything is structurally declared and derived using the cȯdγn language only.

This allows for a unified representation of a system’s dynamics, whether it be for control (such

as central pattern generators) or rigid body dynamics, or other types of dynamics.

Furthermore, various tools built around the core cȯdγn library provide a multitude of useful

functionality. Using cdn-rawc, efficient, optimized, low-level code can be generated auto-

matically from any high-level representation of a cȯdγn dynamical system, without loss of

generality or expressiveness. The resulting code is suitable for Real Time or embedded systems,

such as those often used in robotics, or even micro-controllers. The cdn-studio provides

a graphical user interface in which dynamical systems can be modeled in a graphical man-

ner and experimented with, making it a useful tool for educational purposes. Together with

its availability for GNU/Linux and OS X platforms, the website with documentation and

instructions and the online playground, cȯdγn makes it easy to get started.

We will first use cȯdγn for the modeling of the rigid body dynamics of an adult sized human

in chapter 4. Here we use the capabilities of cdn-rawc to generate fast code suitable for large

scale, population based optimization. In the same chapter, we also implement a model of the

CoMan humanoid robot in cȯdγn and see how the use of the hard contact model available in

cȯdγn provides a more stable simulation of ground contacts, leading to a reduced objective

complexity. Finally, in chapter 5 we use the closed loop dynamics modeling and powerful

model parametrization of cȯdγn to simulate various wearable robot morphologies while

optimizing for human locomotion assistance.

There are limitations to the way cȯdγn works as well. It is only suitable for the modeling

of systems governed by ordinary differential equations. Furthermore, if a system cannot be

easily represented by nodes and edges, then modeling it in cȯdγn can be, although doable,

difficult. With a specific focus on Real Time and embedded systems, cȯdγn specifically targets

dynamical systems which do not alter structure over the course of their simulation. When

looking at the simulation of rigid body dynamics specifically, it is therefore ill-suited for

the simulation of modular robots, to give an example, which reconfigure during operation.

Although cȯdγn provides RBD, it does not at present provide any larger infrastructure for

simulations, apart from numerical integration. This means, for example, that there is no

interactive, graphical simulation environment, no abstraction of actuators, motors or sensors

(such as cameras or range finders, etc.). In other words, it provides the bare simulation, but

currently does not provide a fully integrated, robotics simulation environment.
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Future work includes further increases in performance, specifically considering closed loop

systems and contact models. Furthermore, the appropriate resolution of constraint systems

such as the hard contact model can be improved as well and is currently unsuitable for

handling large numbers of contacts and is limited currently to simple point contacts. It would

also be interesting to extend the RBD features of cȯdγn towards a full robotics simulator

package, possibly integrating it with existing frameworks such as Gazebo.
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cȯdγn model 2.21 – Example of a closed loop pantographic leg [play]

include "physics/physics.cdn"
include "physics/cjoints.cdn"

integrator {
method = "runge−kutta"

}

node "panto" : physics.system {
node "hip" : physics.joints.revoluteY {

com = "[0; 0; −0.02]"
m = "0.01"
I = "Inertia.Box(m, 0.01, 0.005, 0.04)"
q = "0.1 ∗ pi"

# Torque due to slight damping
D = "1e−3"
τ = "−D ∗ dq"

}

node "knee" : physics.joints.revoluteY {
tr = "[0; 0; −0.04]"

com = "[0; 0; −0.03]"
m = "0.02"
I = "Inertia.Box(m, 0.01, 0.005, 0.06)"
q = "−0.4 ∗ pi"

# Torque due to a virtual spring around the
# initial angle of the leg

q0 = "q" | once
K = "0.1"
τ = "K ∗ (q0 − q)"

}

node "ankle" : physics.joints.revoluteY {
tr = "[0; 0; −0.06]"

com = "[0; 0; −0.025]"
m = "0.01"
I = "Inertia.Box(m, 0.01, 0.005, 0.05)"
q = "0.4 ∗ pi"

}

node "par" : physics.joints.revoluteY {
tr = "[0; 0; 0.02]"

com = "[0; 0; 0.025]"
m = 0.1
I = "Inertia.Box(m, 0.01, 0.005, 0.05)"
q = "−0.4 ∗ pi"

}

edge from "{hip ,knee ,ankle}" to ["knee", "ankle", "par"] : physics.joint {}

# Close pantographic parallel structure
node "parcl" : physics.cjoints.revoluteY {

tr = "[0; 0; 0.06]"
}

edge from "{par ,parcl}" to ["parcl", "hip"] : physics.cjoint {}

include "physics/model.cdn"
include "physics/dynamics.cdn"

}
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3 Optimization

Apart from modeling dynamics, a second major cornerstone for the research presented in Part

II is optimization. Just like ‘dynamics’, ‘optimization’ has a very broad definition. It is generally

defined as the process of making something as perfect as possible; the execution of this process

thus yields an optimal result. Optimization is a process that can be applied to any type of

problem which has an associated cost. This cost, as a function of a solution to a problem, is

what determines what the perfect solution to a problem is, namely that solution which renders

a minimal cost. When the solutions yielding a minimal cost are not known beforehand, then

optimization processes can provide a powerful framework to find or discover them.

Optimization is such a large topic of research that it squarely falls outside of the scope of this

text to discuss it fully. Nevertheless, optimization is an ubiquitous method used extensively

in robotics and during the work presented in this thesis as well, and as such it deserves a

small introduction. There are different ways to create a taxonomy of optimization methods. In

the field of robotics, which is concerned with mechanical design and control of articulated

structures, the methods being applied can usually be divided on the metaheuristic axis.

The general problem of optimization can be formulated as

minimize
x

fi (x), (i = 1, · · · , i = I ) (3.1)

such that h j (x) = 0,( j = 1, · · · , j = J ) (3.2)

gk (x) ≤ 0,(k = 1, · · · ,k = K ) (3.3)

i.e. find a solution for x which minimizes fi (the cost function) with the equality constraints

h j on x and inequality constraints gk on x .

The use of metaheuristics refers to the search for and discovery of solutions by a procedure of

informed and repeated trial-and-error, and does not require any knowledge of the behavior

of fi , h j or gk . This contrasts with classical methods, such as iteration methods (e.g. New-

ton’s method), which need information on fi (usually its derivative) to determine in which

directions of x an improvement of fi can be obtained (within constraints imposed by h j and
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gk ). Optimal control (Zhou et al., 1996) and multiple shooting are popular non-metaheuristic

methods in the robotics community. The main advantage of using metaheuristics instead of

these methods is that little knowledge of the cost function landscape is required. It therefore

also allows for a more explorative search of the solution space since cost functions can be

defined in very generic terms, whereas non-metaheuristic methods usually require more

specific costs. Consequently, metaheuristic methods usually have less problems with local

optima.

Metaheuristic methods also have disadvantages. First, heuristic methods are often stochastic

in nature. This means that to get reliable results, optimizations often have to be repeated a

number of times. The optimization process itself can also be very computationally expensive,

since search, although informed, is still a process of trial-and-error, often requiring many trials.

Metaheuristics also often lack fundamental underlying theory and do not guarantee that an

optimum is found in finite time.

A large number of metaheuristic methods are inspired by natural processes. Whether they are

evolutionary processes (Genetic Algorithms, (Goldberg et al., 1989)), swarming behavior (Par-

ticle Swarm Optimization, (Kennedy and Eberhart, 1995)) or methods derived from studying

behavior in colonies (Ant or Bee Colony Optimization, (Dorigo and Birattari, 2010; Karaboga

and Basturk, 2007)), they are all inspired by observations of natural processes. The idea that we

can optimize engineering problems by mimicking natural processes is a powerful one. Indeed,

it is widely accepted that these processes lead to (local) adaptation to obtain an optimal fitness

(the inverse of cost). Most of the methods derived from these observations are based on a

populace with such internal dynamics that over time, a global optimum can be found.

This chapter contributes a novel particle swarm optimization (PSO) based method, suitable

for the simultaneous optimization of solution structure and its parameters. This algorithm

is used in chapter 5 for the co-design of a lower limb, assistance providing wearable robot.

Furthermore, a general architecture and software framework for large scale optimizations

using population-based methods has been developed and is provided and distributed under

an open source license.

We now first begin with a brief introduction into population-based optimization methods.

Thereafter the novel PSO algorithm will be explained in detail. Section 3.3 continues to discuss

the application of the optimization of multiple objectives, with a particular focus on popula-

tion based methods used in chapters 4 and 5. Finally, section 3.4 describes a framework for

performing large scale optimization that has been used for the work presented in Part II.

3.1 Population-based methods

Population-based optimization methods are based on maintaining a (possibly large) popula-

tion of potential solutions to a particular optimization problem. These solutions are evaluated

to obtain their objective fitness values. Based on this objective fitness, a new population is
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generated through a variety of mutation and recombination methods which generates new

solutions to be evaluated. This process is then repeated until some stopping criterion is met.

Instead of relying on a rigorous treatment of the problem dynamics, these methods often rely

on heuristics and stochastic processes to explore and discover solutions to a particular problem.

They therefore usually do not guarantee to obtain a globally optimal solution. On the other

hand, they can be used on problems for which the task dynamics are not well known, for which

fitness landscapes are rough and unpredictable, and generally to explore large parameter and

solution spaces without a-priori knowledge.

Population-based methods are therefore often successfully used to perform exploratory

searches on open-ended problems. Due to the fact that often large populations need to

be used to obtain satisfactory results, they are particularly well suited for large scale off-line

optimizations, rather than on-line optimizations.

In Part II, we use population-based methods for the optimization of tasks related to human lo-

comotion for especially these reasons. There exist a large number of these type of optimization

algorithms and we briefly discuss the most popular ones here.

3.1.1 Genetic Algorithms

The genetic algorithm (Goldberg et al., 1989) is perhaps the most classically regarded population-

based optimization method. Inspired by naturally occurring evolutionary processes, in genetic

algorithms a selection algorithm determines which individuals in the current population are

considered fit for breeding offspring constituting the next generation. Mutation and cross-over

operations provide for exploration of the parameter space and diversity of the population.

Variations of genetic algorithms differ in their choice of selection mechanisms of which

there are many. Popular choices include tournament selection, roulette wheel selection and

elitism. Selection methods can also be combined to create new selection methods with certain

advantages on particular problem domains. Furthermore, different ways of generating the

offspring lead to a large variety of genetic algorithms.

One of the difficulties of using genetic algorithms is the fact that there are so many different

variants and choosing one that works well for a specific problem is not obvious. Additionally,

each variant has a non-trivial amount of parameters which need to be set and which can

significantly influence the performance of the algorithm.

3.1.2 Genetic Programming

Genetic programming (Koza, 1992) is a method for constructing task solving programs. The

algorithm finds its roots in genetic algorithms, but instead of optimizing the parameters of a

parametrized problem, it optimizes the structure of a program whose purpose it is to solve
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the task. It can therefore be applied to problems for which the structure of the solution is not

known and which are thus hard to parametrize.

In genetic programming, programs are usually represented in tree-like structures and, similar

to genetic algorithms, a set of mutation and cross-over operations manipulate these trees to

obtain new sets of programs.

∗

+

a cos

b

−

sin

y

5

(
a +cos(b)

)
∗

(
sin(y)−5

)

Figure 3.1 – Representation of a solution program generated by genetic programming for the
canonical problem of mathematical function fitting. Mathematical operators, variables and
numerical constants make up the alphabet of the genetic program. The resulting mathematical
expression represented by the program can be evaluated to obtain the quality of the solution.

As an example, consider the textbook case of fitting a multi-variate mathematical function to

a set of data (i.e. data modeling). The building blocks of the programs generated by genetic

programming are mathematical operations, variables and numerical constants. The goal is

then to construct programs (mathematical functions) which best explain the data. Figure 3.1

shows a canonical representation of a solution program as generated by genetic programming

for this problem. The generated program can be evaluated based on how well it explains

the data. From this, new programs are constructed using structural mutations (additions

of new nodes, removal of existing nodes) and by combining solutions through cross-over

operations to obtain a new set of candidate solutions. This process is repeated until a sufficient

explanation of the data is found.

The above example is one of the canonical applications of genetic programming, but certainly

not the only one. It has been successfully used for a variety of computer science problems such

as subroutine discovery (Rosca and Ballard, 1996) or uses in quantum computing (Spector

et al., 1999). It has also found applications outside of the computer science domain, such as

for the design of components with specific constraints (Lohn et al., 2005).

Although genetic programming is a versatile and useful technique, it also has several disadvan-

tages. For example, it can be hard to constrain the solution space of genetic programs. Multiple
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solutions with different internal structures can still perform the exact same computation.

Furthermore, just as with genetic algorithms, there are a possibly large number of algorithm

parameters to set.

3.1.3 Particle swarm optimization

Particle swarm optimization is in many ways an answer to the difficulties of using genetic al-

gorithms in practice. Particle Swarm Optimization (from here on referred to as PSO) is another

population based, stochastic optimization algorithm which has been a popular alternative

to genetic algorithms since it was first introduced in (Kennedy and Eberhart, 1995). In its

essence, PSO is a very simple algorithm, consisting only of two simple equations which govern

its dynamics. Conceptually, the PSO is a cooperative algorithm where the individual particles

share information about known solutions of the particular problem being solved. Shi and

Eberhart (1998) have proposed a slightly modified version of the original PSO algorithm, which

is often the algorithm used today when referring to PSO. The two equations describing the

whole algorithm are given in equation 3.4.

vi (t +1) = w · vi (t )+ ri 1 · c1 · (Xi −xi (t ))+ ri 2 · c2 · (Xg −xi (t ))

xi (t +1) = xi (t )+ vi (t +1) (3.4)

Here xi is the current position of particle i in the parameter space. It is thus the vector of real-

valued parameter values representing a particular solution to the problem being solved. vi is

the current velocity of particle i . Furthermore, ri 1 and ri 2 are two random numbers uniformly

distributed between 0 and 1, Xi is the best solution as found by particle i (its personal best)

and Xg is the global best known solution. The constants c1 and c2 determine the importance

of respectively local versus global search. Compared to the original algorithm as described in

Kennedy and Eberhart (1995), an additional term is introduced, the so called inertia factor w

(Shi and Eberhart, 1998). The purpose of w is to improve the convergence by smoothing the

parameter space and has been generally found to improve the performance of the PSO.

The algorithm as presented has only three parameters, the inertia factor w and the two

constants c1 and c2. Although research has been done as to the importance and influence of

these parameters, they are usually (unless explicitly researched) set to the values 1.494 for both

c1 and c2, and 0.729 for w which can be shown to guarantee convergence of the algorithm

(Clerc, 1999; Eberhart and Shi, 2000; Clerc and Kennedy, 2002).

Finally, to perform the optimization, an initial population of particles is generated each with

an initial position vector xi and initial velocity vector vi . Both of these vectors are usually

initialized such that they are randomly, uniformly distributed in a bounded parameter space.
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We limit the maximum value of each dimension of the velocity vector to a fraction of the

distance from the minimum parameter boundary to the maximum parameter boundary

(Eberhart and Shi, 2000). This has been shown to give good results in general as there is more

exploration (in particular in the beginning of the optimization). After the population has been

initialized, at each iteration the fitness of each particle for the parameters xi is calculated and

Xi and Xg are updated accordingly. Then, for each particle, the particle’s velocity vi and xi are

updated using equation 3.4. The stopping criterion is often chosen to be a fixed number of

iterations or some measure of convergence.

Figure 3.2 – PSO optimization of the Six-hump camel function as defined in equation 3.5. This
function has two global optima, at approximately the top and bottom center of the space
shown here. The particles start out with random initial positions and velocities in the 2D
parameter space. Particles then start to explore the parameter space based on their local and
global best known parameters. As the iterations progress (left to right, top to bottom), particles
start to converge on one of the global minima of the function.

Figure 3.2 shows an example of PSO optimizing a well known optimization test function, called

the Six-hump camel function, defined as

f (x, y) =
(
4−2.1x2 + x4

3

)
x2 +x y + (−4+4y2)y (3.5)

We look at the parameter space bounded by x ∈ [−2,2] and y ∈ [−1,1], which contains two

global minima in this range, at (0.09,−0.71) and (−0.09,0.71). As shown in figure 3.2, PSO

is able to converge on one of the global minima. This also shows how PSO will only finally

converge on a single optimum, and which one depends on the initial conditions.
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3.2 Metamorphic particle swarm optimization

Since its original inception, the Particle Swarm Optimization algorithm (or PSO) (Kennedy and

Eberhart, 1995) has seen a considerable amount of attention in the evolutionary computation

community. Partly due to its simplicity and elegance, since then many new varieties of PSO

have been developed by researchers in the community trying either to address some of its

shortcomings (such as stagnation (Worasucheep, 2008; Evers and Ghalia, 2009), diversity

(Monson and Seppi, 2006) or niching (van den Bergh and Engelbrecht, 2004; Nickabadi et al.,

2008)) or to improve its performance tailored towards specific sets of problems (such as

multiple objectives or constraints (Ray and Liew, 2002; Parsopoulos and Vrahatis, 2002; Leong

and Yen, 2008)).

We now turn to look at solving such a particular set of problems: Namely, the optimization

of a problem for which a discrete set of solution classes exists , each with a (possibly overlap-

ping) subset of continuous parameters taken from the total parameter set. The optimization

then needs to take into account the discrete problem as well as optimizing the continuous

parameters used for this particular solution class. This might seem like an abstract problem,

but indeed, many real problems are formulated this way. Often we choose to optimize each

solution class of the problem independently or even manually and compare the results later.

This however is 1) not practical for problems for which a large set of different solutions exist,

2) inefficient for problems with a large possible solution set but a small probable solution

set, and 3) it can be biased by human intervention especially for the cases for which human

intervention is not sufficient. To solve these kinds of problems we require an algorithm which

1) makes informed, discrete decisions about which classes of solutions to explore and 2) finds

optimal parameter values for these classes of solutions.

The first contribution to solving discrete binary problems using PSO came not long after the

original PSO algorithm was published. In Kennedy and Eberhart (1997), the original author of

PSO details a version of PSO which uses probabilities of a discrete value switching from 0 to 1

(or the other way around) instead of the actual values as the parameters being optimized. More

recently, this approach was generalized in Clerc (2004) in which the definitions and operations

of the PSO (position, velocity, subtraction, external multiplication and move) are redefined for

the discrete domain. An extension of the original binary discrete PSO algorithm was presented

in Pugh and Martinoli (2006) in which discrete multi-valued problems are solved by adding a

probability for each possible value that the discrete variable can take. Here we take inspiration

from this work and use a similar approach to making discrete choices by using probabilities.

However, unlike in previous approaches we will define probabilities related to exploration

and exploitation similar to those used in PSO to search the set of discrete solution classes

while at the same time solving the continuous problem in each solution class. We see that

this allows for more control of the way the problem is solved while at the same time reusing

concepts from the continuous domain, which have worked well in general, to the discrete

domain. Although genetic algorithms and genetic programming could be used in a similar way

to provide the discrete part of the optimization, it has been shown in Bourquin et al. (2004)
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that PSO performs better for the type of locomotion optimizations that we are interested in.

We are therefore interested here in reusing the collaborative/cooperative nature of the PSO in

the discrete part. The novel algorithm that we designed for this particular problem is called

Metamorphic Particle Swarm Optimization.

The following sections first describe the main MMPSO algorithm in detail. After this descrip-

tion we show some of the MMPSO properties on an example problem. Finally, we discuss

some of the applications of the algorithm and future work.

3.2.1 Metamorphic PSO Algorithm

We found PSO to be a well performing and easy to understand algorithm for a wide variety

of optimization problems. It often outperforms algorithms such as genetic algorithms (Ou

and Lin, 2006; Latiff et al., 2007) in a variety of different domains it has been applied to. The

elegance of the algorithm, the small number of parameters (c1, c2 and w) to tune and the

general performance are arguably some of its most prominent features.

The base PSO algorithm as described in the previous section works on continuous parameters.

What we are interested in, in this work, however is a combination of a discrete set of parameter

subspaces and a simultaneous optimization of each of these parameter subspaces (in which

the parameters are continuous). We have coined our algorithm Metamorphic due to the fact

that the it meta-optimizes the possible solution subspaces by morphing particles from one

subspace to another, reconfiguring its parameter space. Note that here we do not mean meta

optimization which is concerned about optimization of algorithm parameters or objective

functions.

We briefly describe a concrete robotics problem (explained in more detail in section 3.2.3) to

illustrate for which type of problems MMPSO was designed. Let us assume a certain robotic

structure with K degrees of freedom, for which we want to find control laws for locomotion.

Furthermore, let us assume that we can control each of these DOFs with three different modes

of control, namely 1) oscillation, 2) continuous rotation or 3) a locked constant offset. We now

have three choices of control modes to make for each of the K degrees of freedom. Instead

of making these choices manually, we designed MMPSO to explore combinations of control

modes for each DOF automatically. We will occasionally refer to this application of MMPSO in

explaining certain concepts of the algorithm.

Concepts and Terminology

The Metamorphic PSO Algorithm (hereafter referred to by MMPSO) has been specifically

designed for the type of problem described above. Still staying in the abstract domain, consider

the following problem containing 9 parameters to optimize as shown in figure 3.3.

This schematic representation of the parameter space consists of three entities (A, B and C)
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Figure 3.3 – Example parameter configuration of a single particle. Each of the parameter pools
A, B and C depict a discrete number of parameter groups. The group number is indicated
in the superscript of each box as well as by the background shading for clarity. In each pool,
only one group can be active and optimized at a given time. Parameters can overlap between
different groups as can be seen in pool B, where a valid set of parameters is either (4, 5), (5, 6)
or (6, 7). One complete subspace is composed of selecting one group for each pool, for example
{(1), (4, 5), (9)}. There are a total number of 9 parameters in this example.

which we call parameter pools. A parameter pool in MMPSO is something which defines a

distinct number of possible parameters groupings active at a single given time. Thus, referring

to figure 3.3, in pool A only either parameter (1) or parameters (2, 3) are active. In the context

of MMPSO, we call these different parameter groups and in the text we indicate a group within

parentheses (). The groups within each pool are mutually exclusive. Although the groups are

mutually exclusive, the parameters in each group need not be. Indeed, as shown in pool B in

figure 3.3, parameter 5 is active both in group 1 and in group 2. Similarly, parameter 6 is active

in both group 2 and in group 3 (groups are indicated by a superscript in each box).

We have until now only explained the concepts of pools and groups. We still need to outline

the concept of parameter subspaces. Given the definitions of the pool and group above, a

parameter subspace is one, valid combination of groups chosen from each pool. In the text

we will indicate subspaces with braces {}. In figure 3.3 possible subspaces are {(1), (6,7), (8)}

or {(1), (4,5), (9)}. The total number of possible subspaces results from simple combinatorics

on the groups in each pool. In our example, the total number of subspaces would thus be

2×3×2 = 12.

To relate the MMPSO parlance to our concrete robotics example, each DOF is represented

by a pool and each control mode is represented by a group. Thus each pool contains three

groups (oscillation, rotation, locked) to choose from. A particular subspace is then a specific

combination of control modes for each DOF. Note that unlike depicted in figure 3.3, each

pool here has the same configuration. The continuous parameters themselves are the control

parameters corresponding to each control mode (such as oscillation amplitude and offset).
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The goal of MMPSO is to efficiently search for solutions within these subspaces, dividing effort

spent in each subspace based on a similar principle of collaboration as used by the base PSO

algorithm. To accomplish this we separate the algorithm in two layers.

The inner layer

The inner layer is defined as one instance of a subspace (i.e. there are 12 distinct inner

layers in our abstract example). Each inner layer runs an independent base PSO algorithm.

Particles initially are equally distributed over the different subspaces (note that there can be

more subspaces than particles in which case some subspaces remain initially unpopulated).

Although we use the base PSO algorithm as defined in section 3.1.3, it should be noted that

any extension or variant of PSO could be run without modification in the inner layer. The

main contribution of MMPSO is the way particles are transferred between subspaces in what

we call the outer layer.

The outer layer

The outer layer is a separate algorithm outside the inner layers responsible for migrating

particles from one subspace to another. Figure 3.4 shows a schematic representation of the

two-layered system. Each subspace contains a separate PSO and the outer layer migrates

particles between subspaces. A subspace best solution, Xs is maintained in each subspace

and is the equivalent of the globally best known solution Xg in the base PSO algorithm. We

also introduce a new Xg which represents a new globally best known solution known only to

the outer layer algorithm.

To transfer particles between subspaces we borrow the concept of the mutation operation

from genetic algorithms. The basic idea is to migrate a particle from one subspace to another

subspace based on migration probabilities. However, unlike in GA where a beneficial mutation

is automatically propagated to the next generation, we do not have such a concept in our PSO.

Simply moving particles from one subspace to another randomly chosen subspace will not

provide appropriate pressure to explore subspaces that have a higher overall fitness more than

other subspaces, since the particles are moved (and moved again) randomly.

To address this issue, we take inspiration from the concepts of local versus global search and

exploration versus exploitation from PSO and introduce three migration probabilities. The

exploration migration probability Pe , defines the probability of a random migration of the

active group within each pool. The local migration probability, Pl , defines the probability of

migrating to the group within each pool which is contained in the best solution known to that

particle. Similarly, the global migration probability, Pg , defines the same type of migration

probability as the local migration probability, but towards the globally best known solution Xg

over all subspaces.

Together, these three migration probabilities will govern the search of the different subspaces
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Figure 3.4 – Schematic overview of the two-layered algorithm. Each of the subspaces contains
an independent PSO with a population set to the particles which are currently in the subspace.
The green (triangle) particle represents the best known solution for each subspace which we
call Xs (this is equivalent to Xg in the base PSO). The blue (rectangle) particle represents the
globally best known solution taken over all the subspaces and is only known only to the outer
layer algorithm. We call this solution Xg .

in a collaborative manner similar to how PSO tries to optimize parameters within a subspace.

We can now define the probability P (sc → s j |sc 6= s j ) of each particle, migrating from the

current group (c) of a pool (s) to a group ( j ) different from c as given in equation 3.6.

P (sc → s j |sc 6= s j ) = 1− (1− Pe

N −1
) · (1−Pl |s j = sl ) · (1−Pg |s j = sg )

P (sc → s j |sc = s j ) = 1−
N∑

k
P (sc → sk |sc 6= sk )

Pe +Pl +Pg ≤ 1 (3.6)
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Here the notation P (a → b|a 6= b) is used to mean the probability of a transitioning to b given

that b is different from a, thus the probability of a particle migrating from a particular group to

a different group. This probability is calculated from the probabilities Pe , Pl and Pg as defined

above and N is the number of different parameter groups in the pool s. Furthermore, sl is the

parameter group l of pool s in which the locally best known solution of the particle has been

found and sg is the parameter group g of pool s in which the globally best known solution

(over all parameter subspaces) has been found.

Equation 3.6 proceeds to calculate first the probability of not migrating, which is given by

the product of the probabilities of not migrating due to, respectively, exploration (Pe ), local

migration (Pl ) and global migration (Pg ). The probability of not exploring is given by 1 minus

the probability to migrate according to Pe to any other group, of which there are N−1. Secondly,

the probability of not migrating towards the locally known best group can be calculated by 1

minus Pl , given that the group to be transitioned to (s j ) is the locally best known group (sl ).

We have adopted the notation Pl |s j = sl here to evaluate to Pl when s j = sl , or 0 otherwise.

The probability of not migrating towards the globally best known group is calculated in the

same way. Finally, the resulting probability P (sc → s j |sc 6= s j ) is then given by 1 minus the total

probability of not migrating.

For completeness, the second equation provides the probability of staying in the same group

(i.e. not migrating at all). This probability is simply 1 minus the total probability of migrating

to any of the N other groups. In practice, only the first equation is used to calculate whether a

group needs to be migrated. Finally, to guarantee proper probabilities, the sum of Pe , Pl and

Pg must be smaller or equal to one.

The probabilities as described in equation 3.6 are proper probabilities in the sense that the

sum of all the probabilities equals to 1 (this can be easily seen since the probability of not

migrating is defined as 1 minus the sum of probabilities of migrating to a different group).

They are also defined correctly such that setting for example Pe = 0.5 will cause on average

one particle per two iterations to migrate to each pool randomly.

As an example, figure 3.5 shows schematically the migration probabilities involved for a given

state of the pool B ∈ s for a particular particle (as shown before in figure 3.3). The figure

portrays the case where the current group of B (Bc ) is group 1, or parameters (4, 5). The locally

best known group (Bl ) is group 2, or parameters (5, 6) and the globally best known group (Bg )

is group 3. There are then three probabilities P (B1|B1 = Bc ), P (B2|B2 6= Bc ) and P (B3|B3 6= Bc )

which respectively represent the migration probability of 1) not changing the current group,

2) changing the current group from B1 to B2 and finally changing the current group from B1

to B3. Using equation 3.6, these probabilities then become as shown in equation 3.7. We will

discuss ways to choose Pe , Pl and Pg to design certain behaviors of the algorithm in section
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3.2.2.

P (B1 → B2) = 1− (1− Pe

2
) · (1−Pl )

P (B1 → B3) = 1− (1− Pe

2
) · (1−Pg )

P (B1 → B1) = 1−P (B1 → B2)−P (B1 → B3) (3.7)

Figure 3.5 – An example of the migration probabilities involved in migrating the pool B ∈ s from
one particular current group (Bc ) to each possible group of B. The probabilities P (B1 → B1),
P (B1 → B2) and P (B1 → B3) can be calculated using equation 3.6. The resulting probabilities
(as functions of Pe , Pl and Pg ) are given in equation 3.7.

Pseudo Code

A very short and concise pseudo code listing for the algorithm is given in algorithm listing 1 1.

In short, at each iteration, a base PSO is run for each currently non-empty subspace. After this,

the best local and global group (sl and sg ) for each pool are updated according to the fitness

of each particle. Finally, particles are migrated from one subspace to another by changing the

group in each pool according to the probabilities Pe , Pl and Pg .

3.2.2 Properties

There is only one set of parameters left for the user of MMPSO to choose. These parameters

are the mutation probabilities Pe , Pl and Pg . The values of these parameters are important

1. A fully working example of the MMPSO algorithm implemented in matlab is available at: http://biorob2.epfl.
ch/~jvanden/mmpso/mmpso_code_nicso_2013.zip
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Algorithm 1 MMPSO

Subspaces: the set of all subspaces
Pools: the set of all pools
P : probability function of sc → si with Pe ,Pl ,Pg

1: function MMPSO
2: Particles ← initializePopulation

3: while stopping condition not met do
4: for u ∈ Subspaces,u 6= ; do
5: PSO(Particles∪u) . base PSO on particles in u

6: for s ∈ Pools do
7: {sl , sg } ← updatePoolBest(s) . update sl and sg

8: for p ∈ Particles do
9: for s ∈ Pools do

10: migratePool(p, s, P (sc → si |sc , sl , sg )) . migrate sc → si using P

since they will completely govern the behavior of the outer layer algorithm. As such, they need

to be chosen carefully.

In general we would normally like to stimulate exploration early in the optimization, so the

various subspaces are explored sufficiently and general (sub)optima can be located. As the

optimization progresses, particles should start to focus more on their locally best known

subspaces to explore these in more detail. Finally, particles should start to converge on the

globally best known subspace to maximally optimize for that particular space during the late

phases of the optimization process.

To get this kind of behavior, we can design the mutation probabilities using probability curves

as functions of the number of iterations. Note that we assume here a stopping criterion based

on the maximum number of iterations. If a measurable convergence criterion is used, then the

probability curves can be a function of the convergence instead, however we have not explored

this possibility yet. Figure 3.6 shows one particular choice of the probability curves. Here we

used sigmoid shaped functions for the exploration and global exploitation probabilities, and

a Gaussian shaped curve for the local exploitation probability. Choosing the shapes of the

curves similarly to the ones shown in figure 3.6 generally works well.

Although we do not have a rigorous design methodology for the choice of these probabilities,

we have developed an emperical and procedure to choose initial values for the probabilities.

The basic procedure is to first estimate for how many iterations, on average, you want particles

to explore a give subspace. This is very much problem dependent and the usual procedure is

to perform a few optimizations and look at the fitness progression to see how many iterations
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it takes for particles to get a sense of how well a subspace can solve the problem. Then,

given the number of particles, probabilities can be choosen such that particles explore on

average that number of iterations in each subspace. It should be noted that this procedure is

very much a manual process, and a certain knowledge about the problem domain has to be

assumed (i.e. how difficult is the optimization process). Emperically, we found that obtained

results are not very sensitive to the exact choice of the probabilities, but we have not yet

done extensive studies to quantity this findings. Furthermore, future work includes automatic

tuning of these probabilities based on estimations of convergence, which should lead to better

automatic exploration and exploitation behavior without needing to manually choose the

correct probabilities beforehand.
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Figure 3.6 – Mutation probability characteristics for the exploration probability Pe , local ex-
ploitation probability Pl and global exploitation probability Pg , emphasizing early exploration
and late convergence.

Example

In this section we will briefly show some characteristics of the MMPSO on the most simple

numerical problem. Although the example is a trivial one, it makes it equally trivial to analyze

its behavior. In this simple example we are going to consider only two parameters, x and y ,

both bounded in [0,1]. We define one pool containing two groups. The first group is (x) and the

second is (x, y). Thus a particle either optimizes for only x or both x and y . We further define

two objective functions. The first is evaluated for particles optimizing {(x)} and the objective

is simply x itself, with a maximum value of 1. The second objective function is evaluated for

{(x, y)} and is given by 2− (|x −0.5|+ |y −0.5|), which has a maximum value of 2 at x = 0.5 and

y = 0.5. These objectives were chosen such that the maxima in both subspaces are at different

values of x, to illustrate the ability of the algorithm to find both.

The population size in this example is set to 40 particles and the optimization lasted for 70
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Figure 3.7 – Particle flow for subspace 1 (left) and subspace 2 (right). The green (upper) and
orange (lower) areas show respectively the in- and out-flow of particles in each subspace.

iterations. The probabilities Pe , Pl and Pg were respectively 0.01, 0.05 and 0.05, i.e. constant

which allows us to analyze their properties in a more straightforward manner than using

iteration dependent probabilities as show in figure 3.5. All particles were initialized in the

region [0,0.25] for both x and y to better show the effect of the particles converging on the

maxima.

Figure 3.7 show the flow of particles between the two subspaces. The particles quickly converge

on their respective maxima (not shown in the figure). For this simple problem, the population

sizes of both subspaces can be easily calculated in the limit of the iteration using equation

3.6. Given that all particles will at some point have visited both subspaces (due to Pe ), such

that the global best and local best are both located in the second subspace. This results in a

probability P (s1|s2) = Pe and P (s2|s1) = 1− (1−Pe ) · (1−Pl ) · (1−Pg ). Given the probabilities

as defined before, this results in P (s1|s2) = 0.01 and P (s2|s1) ≈ 0.1. Thus the final populations

would be approximately, on average as given in equation 3.8.

S1 = P (s1|s2) · N

P (s1|s2)+P (s2|s1)
≈ 0.1 · 40

0.11
≈ 37

S2 = P (s2|s1) · N

P (s1|s2)+P (s2|s1)
≈ 0.01 · 40

0.11
≈ 3 (3.8)

Figure 3.7 show the trend towards these population sizes (though the simulation would have

to be prolonged further to approach these values).
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3.2.3 Applications

We briefly briefly discuss one previous application and one future application of MMPSO to

show how this algorithm can be applied to a specific set of robotics problems.

Automatic gait generation in modular robots

In Pouya et al. (2010) we explored the generation of locomotion gait patterns for a modular

robot named Roombots (Spröwitz et al., 2010) using MMPSO. This work did not focus on

the specifics of the optimization algorithm used, but rather on the control methodology of

generating locomotion for modular robots. One module of this robot has 3 degrees of freedom

(DOFs) (see Spröwitz et al. (2010) for details about the robot structure). One particular feature

which makes Roombots an interesting platform for studying gait generation is that each DOF

can continuously rotate, allowing a diverse array of locomotive behaviors. Two Roombots

modules joined together are termed a Metamodule. The goal of this work was to explore

locomotion modes of a Roombots Metamodule. The peculiar placement of the degrees of

freedom of the Metamodule however make it hard to design locomotion controllers by hand.

If all 6 degrees of freedom of the Metamodule would have the same control law, then a standard

PSO would have sufficed to optimize the various controller parameters. In this work however

we were interested in exploring combinations of three different control modes for each of

the DOFs: oscillation (i.e. sinusoidal), continuous rotation, and locked, in which the DOF is

controlled to remain at a certain constant offset.

To explore combinations of these different control modes, we have successfully used MMPSO

to select control modes for each of the DOFs. In MMPSO terminology, there were 6 (identical)

pools (one for each DOF). Each pool consisted of three parameter groups (one for each

control mode). The open control parameters to be optimized (for each DOF i ) were the

oscillation amplitude Ri , the oscillation or locked offset Xi and a phase bias ψi j controlling

the phase relationship between neighboring DOFs. The MMPSO pool for each DOF i is given

by: [(Ri , Xi ), (), (Xi )], with groups for respectively the oscillation, rotation and locked modes.

Note that there are no parameters for the rotation mode and that the offset Xi is shared

between the oscillation and rotation modes. In terms of MMPSO subspaces, there are a total

of 36 = 729 different subspaces to be explored. One possible MMPSO subspace is given in

equation 3.9:

{(R1, X1), (R2, X2), (X3), (), (), (X6)} (3.9)

where the two DOFs are oscillating, the third and last DOF are locked and the fourth and fifth

DOF are rotating.

We ran MMPSO to optimize at the same time the control mode configuration and the control

parameters. One of the main outcomes of that work shows that allowing optimization of

so-called Hybrid control modes, selected by MMPSO, generally outperforms Pure control
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modes (such as only oscillatory or rotational modes for all the joints). The choice of the migra-

tion probabilities Pe , Pl and Pg gives precise control over how many iterations (on average)

particles explore different subspaces and can be chosen informatively as it is straightforward

to calculate how much time particles remain in the same subspace on average. For more

details on this particular work, we refer to Pouya et al. (2010).

Co-design of mechanics and control of a wearable exoskeleton

MMPSO has been designed for applications where there are a certain (known) set of design

choices to be made for (sub)parts of the system. This leads to a combinatory number of

possible solutions to be explored. One interesting application of MMPSO for robotics is

the co-design of the mechanics (or morphology) and control of a robot. In chapter 5, we use

MMPSO for the co-design of the morphology and control of a wearable, non-anthropomorphic

exoskeleton. Briefly, the main idea here is to first assume the human body to be a given, fixed

mechanical structure. This “system” is then augmented with parallel structures composed

of various components (linear/revolute actuators and rigid links), composing the wearable

robot. Morphological parameters to be optimized are related to actuator placement and

segment lengths. At the same time, open control parameters for controlling the actuators

have to be optimized, which similarly to our work described before can have different control

modes. The augmented system can then be evaluated on certain tasks such as locomotion

assistance. MMPSO can be used here to explore the different combinations of mechanical

parts to construct the exoskeleton attached in parallel to the human body, as well as the control

of this exoskeleton, simultaneously.

3.2.4 Discussion

We have described a novel PSO based algorithm for optimizing specific optimization problems

combining real-valued parameters with certain discrete choices in the type of solution being

explored. Although the algorithm is suited only for these specific type of problems, we believe

that it provides a valuable addition to the variety of existing modifications of the base PSO

algorithm. The work explains in detail how principles of migration, inspired by genetic algo-

rithms, can be applied to PSO in a collaborative way such that multiple, partially-overlapping

parameter subsets can be explored simultaneously. The use of proper migration probabilities

which separate exploration, local exploitation and global exploitation and their semantics

makes choosing values for these probabilities well defined and understandable. The resulting

behavior can be analyzed in terms of these probabilities and makes it easier to design the prob-

ability functions. Furthermore, the two-layer approach of the algorithm allows for any number

of extensions of the base PSO algorithm to be used without any additional modifications to

the outer layer algorithm.

This work was published in van den Kieboom et al. (2013).
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3.3 Multi objective particle swarm optimization

Particle swarm optimization, like many other population-based optimization methods, is a

single objective optimization method. Many optimization problems however have multiple

objectives. The classic, and relatively easy way, to incorporate multiple objectives in such

algorithms is to design an objective function which maps multiple objectives to a single

objective, using a transfer function. This method is often called aggregation or scalarization

(Coello, 1999). Effectively, the dimensionality of the objective space is reduced by projecting

the objective functions onto a single dimension.

The problem with this type of approach should be obvious. By reducing the dimensionality

through projection, an objective trade-off surface is created where combinations of different

objective values result in the same, indistinguishable reduced objective value. Two commonly

used objective aggregation functions are the weighted sum

f (s) =
∑

i
αi fi (s) (3.10)

and weighted product

f (s) =
∏

i
fi (s)αi (3.11)

, with f the final objective, s the problem solution, αi a weighting constant and fi the original

objectives. Both of these projections allow for manipulation of the trade-off surface through

weighting the individual objectives, however their objective gradient is not the same. Figure

3.8 provides an intuitive representation of the objective trade-off surface created by the two

projections.

Note that the optimal solution does not change, yet the gradient does. Therefore, the path to

get to the optimum has changed, and in a significant way. Following the gradient will result in

faster convergence towards the true optimum when using a product aggregation. Of course,

this is only clear for simple cases like the ones depicted above. In reality, objective functions

are much more irregular, and choosing the right projection beforehand can be difficult.

3.3.1 Multi objective optimization

The aggregation method as just explained does not actually represent a truly multi-objective

optimization. The reason is that even though aggregation methods create a trade-off surface,

the trade-off itself cannot be observed because all values on it are equal. It is therefore still

a global optimization (i.e. resulting in a single optimum found). On the other hand, multi

objective optimization is interested in retrieving the trade-off surface itself.

A good overview of various adaptations of PSO for multi objective optimization problems is

given in (Reyes-Sierra and Coello, 2006). For completeness, the most important approaches
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Figure 3.8 – Comparison of the effect of two projections of multiple objectives. On the left,
a weighted sum aggregation leads to a linear trade-off surface between the two objectives.
While on the right, a weighted product creates a non-linear trade-off surface. Lines on both
plots indicate equivalent objective values while arrows indicate the gradient of the objective
function.

are listed in table 3.1.

3.3.2 Multi objective PSO using lexicographic ordering

Lexicographic ordering optimization is another multi objective optimization method from the

family of a priori optimization methods (Miettinen, 1999; Hu and Eberhart, 2002; Marler and

Arora, 2004). As the name suggests, a priori methods need some a priori known information

to reduce the set of Pareto optimal solutions in some way. The idea behind lexicographic

ordering is to pre-assign a fixed ordering to the objective functions. Given this ordering, the

objectives are optimized in sequence. Given a minimization problem, lexicographic ordering

base optimization is formulated as:

min fi (x) such that (3.12)

f j (x) ≤ f j (x∗), j = 0, · · · , j = i −1 (3.13)

where fi is the i th objective function, x is a solution vector and f j (x∗) is the optimal solution

of objective j . In other words, lexicographic ordering methods treat multiple objectives as

inequality constraints, which are optimized in sequence. Note that the optimal solution f j (x∗)

has to be known for all but the last objective. If these optimal solutions are not known, then

lexicographic ordering can not be used.

To apply this, the main idea is then to consider N −1 objectives to be objectives which can

be formulated such that they are considered to be optimal within some range. For example,

given an objective being locomotion at a desired speed, one can say instead that within
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Table 3.1 – Multi objective PSO methods

Method Description

Sub-population In this approach, the population of particles is subdivided and
each sub-swarm thus created, optimizes a single objective. The
sub-swarms then share information about best found solutions
and recombine their populations accordingly.

Pareto Pareto based methods use the principle of Pareto optimality
to explore the multi-objective trade-off surface. A solution to
a multi objective function is said to be Pareto optimal if any
improvement in the direction of any one objective would neces-
sarily lead to a decrease in one or more of the other objectives.
Furthermore, one solution is said to dominate another if it is
better on every objective. The set of solutions that are Pareto
optimal lie on the Pareto front and the goal is then to find this
front. This is usually done based on the set of non-dominated
solutions (i.e. the currently known set of solutions which are not
dominated by any other solution).

Combined If nothing else, the PSO research community has an excellent
record of combining different methods to obtain new methods.
Partly due to the fact that PSO is a very simple algorithm, and
thus easy to extend, but also because many improvements to
PSO are developed orthogonally. Recombining methods is a pop-
ular way to create new and more complicated methods which
can be tailored to specific problem domains.

0.01 m/s of the desired speed, the difference is not significant. As soon as the objective of

speed is reached, the next objective (for example energy efficiency) can be optimized instead.

Multiple objectives can then be optimized in sequence until reaching the last objective which

is minimized until a termination condition is reached. The ordering of the objectives can be

significant, because it changes the search path. Whether or not this is a problem depends

on the reachability of the next objective through the fitness landscape, having satisfied the

previous objectives, and is problem specific.

Since particle swarm optimization is based solely on the ranking of solutions, and not on

absolute fitness values, lexicographic ordering can be readily applied. The optimization can be

designed by specifying N objective functions and N −1 objective constraints, which determine

when an objective has been satisfied such that the next objective can be optimized in sequence.

The N th objective is minimized until a stopping criterion is met. Particles can then be ranked

first based on the number of objectives they satisfy (in sequence) and then based on their

fitness value of the current objective they are optimizing for.

As an example, let us look again at the example optimizatin of the Six-hump camel function as

shown in figure 3.2. We can separate the function from equation 3.5 into contributions from x,
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y and the cross of x y :

fx (x, y) =
(
4−2.1x2 + x4

3

)
x2 (3.14)

fy (x, y) = (−4+4y2)y (3.15)

fx y (x, y) = x y (3.16)

f (x, y) = fx + fy + fx y (3.17)

Figure 3.9 shows the separated functions graphically. From these figures, it is straightforward

to see where the minima of this function should lie (i.e. the sum of the three figures). The sum

of the fx and fy functions creates two minima at the center top and center bottom. The effect

of fx y is then to skew these minima towards the top left and bottom right.
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Figure 3.9 – Separation of the Six-hump camel function into contributions from (left to right)
x, y and x y .

We can apply a lexicographic ordering method to the optimization problem by first optimizing

for fx (x, y), then for fy (x, y) and finally for the full function f (x, y), in sequence. We formulate

the lexicographically ordered objectives by an objective and a condition until when the objec-

tive is to be optimized before optimizing the next objective. These objectives are listed in table

3.2. Note that the conditions are chosen somewhat arbitrarily in this example, but illustrate

the main idea behind lexicographic ordering.

Table 3.2 – Lexicographic objectives of separated six-hump camel function

Objective Until

1. fx (x, y) fx (x, y) < 0.5
2. fy (x, y) fy (x, y) <−0.9
3. f (x, y) -

The results from running the lexicographic method based PSO are shown in figure 3.10. Here

particles are seen to first optimize for fx , i.e. traveling towards the x center of the parame-

ter space, ignoring y . Then particles converge on the minima imposed by fy while finally

optimizing for the full function.
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Figure 3.10 – PSO optimization with lexicographic ordering on the Six-hump camel function
as defined in equations 3.14 to 3.17. The particles start out with random initial positions and
velocities in the 2D parameter space. Particles then optimize for fx , fy and f in sequence and
finally converge on one of the global minima.

Although lexicographic ordering is argued to work well only when considering a small num-

ber of objectives (Coello, 1999), it lends itself naturally to optimization problems treated as

sequential learning of multiple objectives. Consider the example of optimizing a gait for a

locomotion task. There are several objectives involved in successfully completing such a task,

keeping balance as to not fall over, keeping enough ground clearance, gaining enough speed

and minimizing for energy expenditure. Naturally speaking, it would be hard and unpractical

to try to obtain all objectives at the same time. It is more important for example not to fall over

first, and only then to try to optimize your energy expenditure.

Finally, lexicographic ordering can be seen as a special treatment of Pareto optimality. Indeed,

since objectives are formulated as inequality constraints, improvements on a particular ob-

jective can only be made within the constraint space of the previously obtained objectives.

Furthermore, within the objective constraint space, objective differences are deemed insignifi-

cant. Therefore, in terms of Pareto optimality, solutions are always Pareto optimal with respect

to previous objectives. The difference is of course that whereas a Pareto based method will

try to explore the full Pareto front of multiple objectives, a lexicographic method does not

because objectives are only considered sequentially. In other words, it does not explore the

objective constraint space, other than to optimize for the next objective. It is therefore still a

global optimization method.
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3.4 Large scale population-based optimization

Population-based optimization methods are computationally expensive. They rely on the

evaluation of large populations to effectively explore a problem’s search space. As the number

of parameters to be optimized grows, so must the population size. Additionally, depending

on the type of problem, it can take many iterations before the population converges to a

(locally) optimal solution. Finally, because most population-based optimization methods

are stochastic in nature (e.g. initial random population, random mutation operations, etc.),

optimizations need to be repeated to obtain statistically meaningful results.

During the course of this thesis, an open source framework was developed which makes it easy

to do these type of large scale optimizations on consumer grade, off the shelf hardware. Apart

from the fact that to the best of our knowledge, there currently do not exist good alternatives

to perform these type of optimizations in a managed, multi-user environment, there is little

novelty nor scientific value (in terms of research) in the design or development of this type

of framework. It is however a fundamental tool without which the presented research (and

others) could not have been done. Since it has been written for general purpose use, and

distributed freely, it provides a valuable scientific research tool.

3.4.1 Conceptual overview

Figure 3.11 shows a schematic overview of the optimization framework. There are three distinct

layers (user, server and workstation) in the system. The user layer runs the actual optimization

process which will produce tasks that have to be evaluated. These tasks are passed to the server

layer which queues them in a task queue. The server acts as a central hub to distribute any

tasks it receives to the available workstations. A workstation in turn receives a single task from

the server and executes it. When the task has been evaluated, the result is sent back to the user

through the server layer. The different layers can run on a single PC, but can also be placed on

different networked PCs.

The overall concept of the framework is such that no specific restrictions are placed on the

type of optimization algorithm or the manner in which a task has to be evaluated. Therefore,

the framework can easily be used for many different and concurrent tasks.

3.4.2 User layer

The user layer represents the front-end layer which is run by a user of the system. This layer is

responsible for running the optimization algorithm which produces tasks to be evaluated. As

can be seen in figure 3.11, each optimization, run at the user layer, is encapsulated in a Job

process. The job drives the optimization, sends tasks to the server layer, and feeds retrieved

results back into the optimizer.

The optimizer consists of a population (of tasks) that need to be executed, an optional function
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Figure 3.11 – Schematic overview of the optimization framework architecture

which combines a multi-objective fitness evaluation into a single fitness value, and a data

storage to store the results of the optimization. The optimizer population is a set of tasks that

can be executed independently. For example, in genetic algorithms this would be a single

generation of individuals. These represent the set of tasks that can be distributed at the server

layer. The fitness function represents a mathematical expression that can be used to transform

multiple objectives into a single fitness value, used by the optimizer.

A description of the task that is sent to the server layer is given in table 3.3. Once a task is

executed, a result message as described in table 3.4 is sent back to the user layer.

Table 3.3 – Task Message

Name Description

Id A unique task identifier
Dispatcher The dispatcher with which to evaluate the ask
Parameters A {name → value} dictionary of parameters to be evaluated
Settings A {name → value} dictionary of settings to be passed to the

dispatcher

Table 3.4 – Result Message

Name Description

Id The unique task identifier
Status Whether the execution was successful or not
Fitness A {name → value} dictionary of fitness values
Data A {name → value} dictionary of additional, custom data to be

stored with this task/solution
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Job specification

Jobs to be executed on the framework are specified in a simple XML format. It specifies which

optimization algorithm to use, specific parameters for this algorithm (if any), the problem

parameters to be optimized, the fitness function to use and which dispatcher should handle

evaluation of the task. An example of a job specification is given below:

<?xml version="1.0" encoding="utf−8"?>

<job name="example">

<optimizer name="pso">

<!−− settings specific to the type of optimization algorithm −−>
<setting name="population−size">40</setting >
<setting name="max−iterations">200</setting >
<setting name="max−velocity">0.6</setting >
<boundaries >

<boundary name="speed" min="100" max="1000"/>

</boundaries >

<parameters >

<parameter name="left" boundary="speed"/>

<parameter name="right" boundary="speed"/>

</parameters >

<fitness >

<!−− combine two fitness values in a single fitness −−>
<expression >radius − from_origin </expression >

</fitness >

</optimizer >

<dispatcher name="codyn">

<!−− settings specific to each dispatcher −−>
<setting name="world">$OPTIMIZATION_JOB_PATH /../ simulator/impedance </setting >

<setting name="max−time">10</setting >
</dispatcher >

</job>

3.4.3 Server layer

The server layer consists of a single process which acts as a distribution center for tasks to be

evaluated. This layer is used to allow multiple optimization processes to be run, while sharing

the workstation resources that are currently available. The tasks are scheduled fairly with

respect to the estimated execution time and a task priority. The server automatically discovers

new workstations as they come online through a simple discovery protocol. When new tasks

are received from the user layer, it schedules these tasks (according to their priority) onto a

task queue. Whenever a workstation becomes available, the task is sent to this workstation to

be executed. The workstation then sends the result back to the server, which in turn relays it

back to the user layer.
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3.4.4 Workstation layer

The workstation layer is responsible for executing a single task, and sending the result back

to the server layer. Each task is received from the server layer with the task information as

specified in table 3.3. The worker process then resolves a dispatcher process from the task

description that is to be used to evaluate the task. When the correct dispatcher is located, this

dispatcher will be executed with the task that has to be evaluated. From the dispatcher, the

worker will receive a result in terms of fitness, which it then relays back to the server layer.

Dispatcher

Up to the dispatcher, the framework is entirely task agnostic. The dispatcher is responsible

for actually evaluating a task and there are several dispatchers provided in the framework.

Additionally, it is also easy to write custom dispatchers, for example for other simulators. There

are C++, Python and C# API’s available from which new dispatchers can be easily constructed.

A dispatcher is a simple standalone process which receives a task description on its standard

input and writes back a response on its standard output. Dispatcher management is entirely

handled by the workstation layer.

3.4.5 Results and analysis

All information related to running a task (i.e. all information in the job specification) and all

intermediate results of an optimization run are stored in a SQLite database. This is a convenient

way to store data in a structured way and SQLite is a widely supported format. Storing all

intermediate results leads to relatively large databases, but it allows for exact reconstruction

of the entire optimization process. This also means that running jobs can be suspended and

resumed, even in case of failure (for example accidentally closing the user process, or a crash).

Special care is taken to store the state of the random number generator so that resuming a job

at a later time does not cause differences in any way.

The obtained results database can be inspected using a graphical user interface providing

information on the fitness progression and obtained best solutions. Furthermore, the data

can be exported to be analyzed in Matlab using a provided toolbox.

3.4.6 Availability

The optimization framework software is made freely available under the GPL license. It is

made available at http://optimization.codyn.net/, including sources, documentation and

binary packages.
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3.4.7 In the wild

The tools, simulators and optimization frameworks that have been developed in the course

of this part I have enabled, outside of the work presented in this thesis, a number of other

works of research. Both cȯdγn, as well as the framework for large scale optimization have

provided opportunities which would have otherwise been more difficult and importantly,

more time consuming. Of course, the importance of having such software available should

not be overstated, it is certainly not essential. On the other hand, it does provide a set of very

convenient research tools which can be quickly applied. Here we briefly present works to

which both frameworks have contributed.

Roombots

In Spröwitz et al. (2010); Pouya et al. (2010); Moeckel et al. (2013), we used cȯdγn to implement

a central pattern generator based controller for a modular robot called Roombots (Sproe-

witz et al., 2009). Here the large scale optimization framework was used to optimize various

locomotion controllers. By optimizing the controllers, gaits which utilized the unique, and

unintuitive to control, degrees of freedom of the Roombots to move around in ways that were

hard to engineer.

Co-evolution of morphology and control of virtual legged robots for a steering task

In Larpin et al. (2011) we use co-evolutionary strategies to optimize for the control and

the morphology of legged robots, quadrupeds in particular. Here we evolved task specific

morphology and looked at how body structure influences the steering capabilities of relatively

simple robotic structures. At the same time, we used cȯdγn to easily create structured networks

of coupled oscillators for which parameters were optimized.

Model-based and model-free approaches for postural control of a compliant humanoid

robot using optical flow

Through the use of particle swarm optimization to train neural networks, postural control

of the CoMan robot using optical flow could be realized by learning a mapping from sensor

information to the adaptation of central pattern generators. Here cȯdγn was used for the

implementation of adaptive frequency oscillators (Buchli et al., 2005) and the optimization

software was used to train the neural network.

3.5 Conclusion

In this chapter we have presented a general, but brief, introduction into optimization meth-

ods with a particular focus on population-based optimization methods. Population-based
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methods make use of nature inspired algorithms where competition and cooperation play

important roles in the search for solutions to a problem. They are suitable for the open-ended

exploration of large search spaces and require due to their meta-heuristic nature, very little

knowledge of the problem domain.

Among many population-based methods, Particle Swarm Optimization is a relatively recent

method loosely inspired by swarming behavior of biological organisms. As a simple algorithm,

with very few parameters, it shows the capability of exploring search spaces, using cooperative

strategies.

We are interested in applying Particle Swarm Optimization to problems with variable param-

eter configuration spaces, where a fixed number of possible solution structures are known,

each with a corresponding (and possibly overlapping) parameter set. Examples of such prob-

lems include choosing between various actuator schemes (each scheme with its own set of

parameters) or the co-design of the morphology and control of a robotic structure, where the

possible desired set of structures are known.

To this end, we have presented our novel Metamorphic Particle Swarm Optimization method

which combines Particle Swarm Optimization with mutation operators inspired by genetic

algortithms to transfer particles between different parameter (sub)spaces. By applying cooper-

ative strategies to the parameter subspace tranfer probabilities, we show how the principles

from Particle Swarm Optimization for continuous parameters can be used also for the opti-

mization of discrete sets of parameter configuration spaces.

Finally, we briefly presented our open and freely available framework for performing large-

scale, population-based optimizations in a multi-user setting. The framework does not neces-

sarily present a novel approach to these type of optimizations, but has been instrumental in

several bodies of research. The value of the contribution is in the availability and ease of use,

allowing for rapid replication of results presented in this thesis. Due to its problem, task, and

task evaluation agnosticity, it can be generally applied beyond the work presented here and

can be a useful tool for anyone interested in doing large-scale optimizations.
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4 Optimization of natural human gait

When it comes to research on biped locomotion in robotics, there exist several distinct research

directions. We briefly discuss several of the major approaches. When we look at the energetics

of bipedal locomotion, one area of research that has been fundamental is that of passive

dynamic walking (McGeer, 1990). Despite this works relative age in the field of robotics, it

has given key insights into minimal energy solutions for biped locomotion by maximally

exploiting the natural dynamics of the mechanical system. Passive dynamic walkers often

exhibit a remarkable similarity to human locomotion (Collins et al., 2005), suggesting that

humans make use of similar concepts. Since its original inception, advances have been made

to increase stability and controllability (Wisse, 2005) and to move towards walking in 3D

(Collins et al., 2001; Wisse et al., 2001).

On the other end of the spectrum, one could argue, is biped locomotion by means of trajec-

tory/path planning. This often involves (indirect) control of the Zero Moment Point (ZMP)

(Vukobratović and Borovac, 2004; Vukobratovic and Juricic, 1969). Motions are planned such

that the ZMP, the point on the ground at which there is no net moment, remains within the

robot’s foot support area. This guarantees dynamic stability of the robot. The Honda humanoid

robot (ASIMO) is particularly well known to use ZMP trajectory planning (Hirai et al., 1998;

Hirose and Ogawa, 2007). More recently Huang et al. (2001) have shown that it is not necessary

to plan the ZMP trajectory in full. Instead one can use an iterative approach. In Kajita et al.

(2003), ZMP based control is combined with inverted pendulum based approaches, attracting

the robot towards a future ZMP reference. Although trajectory based approaches to biped

walking have been very successful, their resulting control is often stiff (position based) and

lacks the agility and dynamic of human walking.

Moving away from engineering solutions to biped locomotion, researchers have increasingly

been looking at biologically inspired walking. These works use biologically inspired artificial

muscle models (based on Hill-type muscle models of varying complexity) to model the major

human muscle groups. It has been shown that minimization of metabolic muscle energy is

a sufficient objective to obtain human like walking performance in these types of models

(Anderson and Pandy, 2001). Furthermore, using relatively simple muscle reflexes, natural
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Chapter 4. Optimization of natural human gait

biped walking can be obtained in simulation (Geyer and Herr, 2010; Wang et al., 2012). These

works indicate that the biomechanical system is particularly well “designed” for locomotion.

One particularly important aspect of biomechanical systems that lead to its performance,

robustness and agility, is the ability to task-dependently change the impedance of the system

(Buchli et al., 2010). Variable impedance control has been used in human-robot cooperative

manipulation tasks, where it is important to be able to “give in” to the human collaborator

(Ikeura et al., 2002; Rahman et al., 2002; Duchaine and Gosselin, 2007). It has also been shown

that low impedance control can be beneficial to design robots that locomote both safely and

robustly. In Park (2001) the concept of variable impedance is applied to biped locomotion.

Joint trajectories are first generated using a gravity-compensated inverted pendulum model

(Park and Kim, 1998). The impedance between the feet and the ground are then modulated to

effectively moderate impact forces at ground contact and is shown to help in stabilizing foot

placement.

In this chapter we investigate the role of joint-level impedance control for humanoid loco-

motion. The use of impedance control, as opposed to position control, is inspired largely

by passive dynamic walkers. By allowing impedance to vary we expect that it is possible for

optimization to exploit the natural dynamics (i.e. low impedance) more easily. In particular,

we will look at the emergence of human like gaits by optimizing first principle objectives, i.e.

obtaining a characteristic human like gait without explicitly optimizing for it. Our first study

will develop a method for the simulation and optimization (using the tools developed in the

previous chapters) of impedance controllers to obtain a minimal model explaining various

global human gait characteristics. Having obtained this minimal model, the same methods

are applied to optimize for human like gaits on a model of a humanoid robot. We look at

the differences in obtained gaits and see the importance of (bio)mechanics versus a mimetic

approach for humanoid robot design. Finally, we design a simulated perturbation study to

investigate the emergence of the role of variable impedance towards disturbance rejection.

4.1 Human gait optimization

We begin by developing our method for the optimization of a minimal model for human gait

optimization and the role of joint-level variable impedance control. This study originated

from the following hypotheses

1. Human like gaits arise spontaneously when using impedance control and optimizing

only for mechanical energy expenditure.

2. Gait quality (kinematic similarity, global human gait characteristics) increases with

increasing modulation of impedance.

3. Energy expenditure decreases with increasing modulation of impedance.
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4.1. Human gait optimization

We test these hypotheses using simulations of a simple humanoid model in the sagittal plane

while optimizing variable impedance controllers for each of the joints using Particle Swarm

Optimization. The remainder of the section is organized as follows. First we describe in section

4.1.1 the simulation model and control. We then continue to describe the optimization method

in section 4.1.2. Finally we describe the main results in section 4.1.3 where we confirm our

first hypothesis fully and show trends towards the second and third hypotheses. We conclude

with a discussion in section 4.1.4.

4.1.1 Model

The simulated biped is modeled after an adult sized human, using kinematic and inertial

properties derived from Winter (2009). Figure 4.1 lists these quantities as used in this work.

Note that the segment length l and center of mass quantities CoMx and CoMy are specified

proportional to the total model height. The center of mass quantities are proportional to the

segment length l and the mass m is specified proportional to the total model mass. The model

height and mass used are respectively 1.80m and 70kg in this work.

Joint CoMx CoMy l m rg

torso 0.000 0.030 n.a 0.678 0.90
up leg 0.000 −0.108 0.25 0.100 0.32
low leg 0.000 −0.108 0.25 0.047 0.30
ankle 0.004 −0.002 0.04 0.011 0.48
toe 0.001 0.000 0.03 0.003 0.10

0.09

0.03

0.03

1.80m

Figure 4.1 – Kinematic and inertial properties of the biped model. Kinematic quantities are
proportional to the total model height and the mass is given proportional to the total model
mass. rg indicates the segment radius of gyration, from which the inertia can be derived.
The schematic on the right shows approximate center of mass locations and contact point
locations on the foot (triangles).

We focus only on walking in the sagittal plane. Including the floating base, our model thus has a

total of 11 degrees of freedom. We only actuate the hip, knee and ankle joints of this model. The
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Chapter 4. Optimization of natural human gait

toe joint is modeled using a critically damped spring with a spring constant of 12Nmrad−1.

The only biomechanical effect that we simulate is that of ligaments at the knee to prevent

hyper extension, by means of an exponential spring/damper (τl = K lp · (ql −q)3−K ld · q̇ , with

K lp = 1e6, K ld = 1e2 and ql =−2°). This facilitates both the exploitation of passive force and

eases the optimization’s ability to find initial solutions.

The rigid body dynamics of this model is modeled and simulated using cȯdγn. For the floating

base, we use a special planar joint (available in the cȯdγn standard library) allowing rotation

on the Y axis, and translation in the X and Z direction. The human model is parametrized such

that we can easily change the total length and have all parameters automatically derived using

scaling laws obtained from Winter (2009). The contact model used for this particular study is

the soft contact model of cȯdγn, i.e. a spring/damper contact model including basic coulomb

friction. Each foot has 5 equally distributed points on the bottom surface at which contact

forces are generated as soon as they penetrate the ground.

Controller

Each of the hip, knee and ankle joints are controlled using a simple variable impedance control

law. This control has the following form:

τi (t ) = ki (t )(q̄i (t )−qi (t ))−bi (t )q̇i , (4.1)

where τi is the commanded torque on joint i , ki (t) is a time varying stiffness pattern, q̄i (t)

is a time varying desired joint angle pattern, qi (t) is the actual (measured) joint angle and

bi (t ) is a time varying damping pattern. Each of the control signals for the desired joint angle

q̄i (t ), joint stiffness ki (t ) and joint damping bi (t ) are time varying, periodic signals that need

to be specified to obtain the final control torque τi at each time. Further references to these

variables will omit the explicit reference to time for brevity.

The actual control signals can be implemented in different ways, ranging from simple constant

values to highly complex signals. In this work we are interested in exploring the influence

of variable impedance control with respect to constant impedance control. Here we explore

three levels of increasing control complexity as defined in Table 4.1, 1) a constant value, 2)

a step function with controllable transition timing and 3) a piecewise polynomial function.

Note that t is normalized on [0,1] for one period of the signal. For the piecewise polynomial

function we chose the piecewise monotone cubic (N = 4) Hermite spline (Fritsch and Carlson,

1980) due to its ease of construction and monotonicity property (i.e. it does not overshoot).

We used 4 data points to interpolate the control signal. Furthermore, we ensure the resulting

signal to be continuous and periodic by constraining ḟ (0) = ḟ (1).

For the reference trajectory q̄ we use the ppoly control type in all scenarios, using 4 data

points. Figure 4.2 shows nominal joint angles during normal walking for the hip, knee and

ankle. The piecewise interpolated trajectories show that 4 data points are sufficient (Rhip =
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4.1. Human gait optimization

Table 4.1 – Control modes for k (same for b)

Type Function Parameters

1. constant f (t ) = k k

2. step f (t ) =
{

k1, τ1 < t < τ2

k2, else

}
k1,2, τ1,2

3. ppoly f (t ) =∑N
n

pαn t n , pτ(n−1) < t < pτn
pαn , pτn ,
n ∈ [0, N ]
p ∈ [0,K ]
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Figure 4.2 – Nominal joint angle trajectories, taken from Winter (2009). The dashed lines show
the result of piecewise interpolating the data points, resulting in a sufficient representation of
the nominal joint angle trajectories.

0.999,Rknee = 0.998,Rankle = 0.988) to represent the nominal trajectories and preserve its

primary characteristics.

Stability

It is possible to find solutions which have a stable steady state gait cycle (i.e. that do not fall

over) only by means of the joint impedance control laws. Getting into this steady state however

is not trivial without explicitly taking care of the gait initiation (on which we do not focus in

this work) or adding active balance controllers. Instead we chose to add a simple external

assistive torque on the floating base rotation degree of freedom during the initial phases of
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Chapter 4. Optimization of natural human gait

optimization: τa = K ap ·(±qa−q)−K ad q̇ , with K ap = 3000, K ad = 20 and qa = 5°. This simple

assistance is sufficient to allow the optimization to find initial walking solutions. Note that

there is a neutral zone of ±qa in which no assistive torque is provided. Also, the final solutions

do not require the assistive torque except during initiation since they are optimized to stay

within the neutral zone.

4.1.2 Optimization

The optimization algorithm used to optimize the control parameters is Particle Swarm Opti-

mization using lexicographic ordering to optimize for multiple objectives in sequence (see

section 3.3.2 for more details). Note that this is a standard PSO and not the previously devel-

oped MMPSO since we do not need to optimize the structural space. The constriction factor

K and constants φ1,φ2 were set to K = 0.729, φ1 =φ2 = 2.05 as to ensure convergence of the

swarm (see Clerc and Kennedy (2002)). The maximum velocity of the particles is limited to 0.6

(normalized to the parameter boundaries) and particles are set to bounce off of parameter

boundaries (by means of reflecting their velocity vectors).

Objectives

We have three main objectives for the optimization: 1) we want to walk forward at a specified,

constant speed, 2) we want to have a stable walking gait without the need for external assistive

torque, and 3) we want to minimize the overall energy expenditure. We focus on walking at a

specific, desired speed to restrict our method to exploring walking at a speed which should

naturally lead to energy efficient locomotion. For 3) we choose torque being the simplest, first

approximation of energy expenditure. In our approach, we do not explicitly optimize for other

global gait qualities such as kinematic similarity to human data, since we hypothesize that

human gait kinematics are a natural product of minimization for energy. However, to avoid

exploitation of certain simulation inaccuracies (such as the contact model approximation) we

add one additional criterion which specifies that at least one foot has to be in contact with the

ground at any given time. This prevents exploiting the spring of the contact model to store

and release energy, making the model jump from the ground.

To use lexicographic ordering, we formulate the just stated objectives as sequences of objective

functions and constraints, as explained in section 3.3.2.

Table 4.2 lists the sequence of objectives stages that we used (objectives are maximized). The

first stage ensures that solutions are simulated for the maximum amount of time without

falling over. The second and third stage ensure that the solution reaches the desired target

speed, with a maximum defined standard deviation of the measured speed over the whole

gait. Speed match is the measured speed as a fraction of the target speed. We thus require

speed to be within 95% of the desired target speed. We chose a walking frequency and speed

based on data from Winter (2009) for normal walking. For all experiments, we set the desired
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4.1. Human gait optimization

Table 4.2 – Lexicographic Objectives

Objective Until

1. time time = max time
2. speed match speed match ≥ 0.95
3. -std speed std speed ≤ 0.1
4. -assist time assist time = 0
5. -non contact time non contact time = 0
6. -torque ∞

forward locomotion speed to 1.3ms−1 (or 4.7kmh−1) and the walking frequency to 0.9Hz. The

fourth and fifth stages optimize for walking without assistance while having at least one foot in

contact with the ground at all times. Finally, the last objective minimizes control torque as long

as all conditions 1-5 have been fulfilled. Since we do not take special care of gait initialization,

the initial seconds of the simulation can exhibit non-steady state behavior. We therefore ignore

data from the first half of the evaluation period for all measured objectives, except time.

Note that as mentioned in section 3.3.2, the ordering of the various objectives can influence

the optimization process. Although we did not extensively explore the effect of ordering, we

emperically verified that it is important for the optimization to first optimize time and only

then match speed. The reason is that this ensures that average speed is always measured over

the whole simulation time (i.e. the model does not fall over). Although this is not the only

manner in which this behavior can be achieved (for example, one could optimize explicitly for

distance), the chosen objectives are simple and prevent exploitation of specific simulation

artifacts.

Parameters

We use a differential encoding δx for the x position of the ppoly data points, such that xi =∑i
j δx j /

∑N+1
j δx j . Note that we need N +1 parameters for δx to satisfy the constraint that

∑N
i δxi = 1.

Table 4.3 – Optimizing Parameters

constant step ppoly

angle pN
h,k,a

stiffness kh,k,a k1,2
h,k,a , t1,2

kN
h,k,a

damping bh,k,a b1,2
h,k,a bN

h,k,a

number (N = 4) 33 45 81

Table 4.3 lists the parameters to be optimized for each of the three different control modes.

The subscripts h, k and a refer to respectively the hip, knee and ankle joint. We have adopted
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the superscript N notation to indicate the parameters required for piecewise interpolation of

N data points, which resolves to N+1 parameters for δx and N parameters for k, b or p (thus a

total of 2N +1 parameters are required). For the constant control mode, we need one stiffness

and one damping parameter for each joint. The step mode needs one additional stiffness and

damping parameter for each joint, as well as two parameters t1,2 determining when the step

occurs in the gait cycle. Finally, for the ppoly control mode we need the same parameters for

stiffness and damping as we have for the joint angle. The bottom row of the table shows the

total number of parameters being optimized for N = 4.
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Figure 4.3 – Example hip stiffness signals resulting from the const (blue solid), step (green
dashed) and ppoly (red dotted) control modes. The large dots represent the control points
which need to be optimized to obtain the resulting signals. We only annotated one pair of
parameters per signal in the figure for clarity (e.g. t2 and k2

h are not shown). Note that we need
N +1 parameters for δx and N for y (here shown for N = 4) for the ppoly signal.

Figure 4.3 shows example signals for each of the three control modes. Note that the more com-

plex encodings also include all signals that can be obtained from the less complex encodings

(i.e. the encoding for step can generate all const signals).

Stiffness values are bound in [0, 12000]Nmrad−1 and damping values in [0, 60] Nmsrad−1.

The upper limits were determined empirically resulting in a very stiff controller. Joint angle

parameter values are bound in [-0.8, 0.8], [-0.1, 1.5] and [-0.6, 0.6]rad for respectively the hip,

knee and ankle joints. These values conservatively contain nominal joint angle trajectories.

Experiments

We run the PSO with 120 particles and for 500 iterations. Note that we use a relatively large

number of particles since 1) we have a large number of parameters to optimize and 2) it is

difficult to find initial solutions that manage to walk a few steps (which can then be refined).

128



4.1. Human gait optimization

We have thus used conservative numbers for particles and iterations which could possibly be

reduced. Note that the proposed optimization strategy is used purely for offline evaluation of

control laws and not as an online optimization procedure. For each control condition, we run

the PSO 10 times with a randomized initial population. This results in a total of 30 runs of PSO,

and a total of 1.8 million evaluations. We run this optimization on a cluster with 127 cores

(11 dual quad core Xeon E5504, 2GHz and 7 dual hexa core Xeon E5-2430, 2.2GHz), using the

large scale optimization framework developed in section 3.4. A single run took approximately

one hour of real time.

4.1.3 Results

On average, the objectives as listed in 4.2 take respectively 2, 7, 13, 71 and 87 iterations for the

first solution to be found that matches its constraints. Furthermore, on average 360 iterations

out of the 500 iterations are spent optimizing for torque. During this time, the torque is reduced

between 3 to 4 times.

const

step

ppoly

stance (≈ 60%) swing (≈ 40%)

Figure 4.4 – Snapshots of one gait cycle of the best obtained solutions from optimization for
each control mode. The gait is shown from heel-strike to heel-strike. All three gaits show similar
characteristics and look qualitatively human like. The ppoly gait shows full knee extension,
while the other two control modes show the knee slightly flexed. The torso leans slightly
forward in all cases.

Figure 4.4 shows snapshots of one gait cycle for the best solution, in terms of torque, of each

control mode. Even though there was no explicit objective to optimize for specific gait qualities,

several global human gait characteristics can be observed. All gaits feature heel-strike, foot-roll,

heel-rise, toe push-off and a double support phase. We also obtain a stance duration of ≈ 60%

of the total gait duration, which is the same as the stance duration in normal human walking.

Another characteristic of human gait is the occurring double peak in ground reaction force,

caused by heel-strike and then toe-off. We observe a similar double peak in ground reaction

force in our simulation results (data not shown).

Table 4.4 shows the obtained average and best obtained results for the three control modes. In

all cases, the optimization reached the last stage, minimizing for torque. In addition to the

minimum torque, Table 4.4 shows the correlations ch , ck and cabetween the hip, knee and
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Table 4.4 – Average Performance

Average Best
τ̄(σ) c̄h(σ) c̄k (σ) c̄a(σ) τ ch ck ca

const 232.3 (44.3) 0.94 (0.07) 0.68 (0.30) 0.17 (0.50) 161.6 0.98 0.68 0.17
step 190.9 (53.3) 0.85 (0.07) 0.58 (0.35) 0.26 (0.22) 108.6 0.96 0.90 0.54

ppoly 216.3 (56.1) 0.93 (0.05) 0.76 (0.13) 0.21 (0.27) 146.7 0.89 0.69 0.13
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Figure 4.5 – Obtained joint angle kinematics after optimization. All angles are shown in
degrees. The dotted lines are average human joint kinematics for normal walking (Winter,
2009). The solid lines are resulting joint kinematics after optimization, for the 5 best obtained
solutions. Each row shows one of the const, step and ppoly control modes. The hip kinematics
strongly correspond to normal human walking. For the knee, best results in terms of matching
kinematics are obtained for the ppoly control mode. Ankle kinematics on the other hand are
more consistent for the step control mode.

ankle joint angle kinematics and average human kinematics. The resulting kinematics are

shown in figure 4.5. The kinematics of the hip are consistently close to normal human hip

kinematics for all three control modes. The knee and in particular the ankle kinematics, on

the other hand, do not resemble human kinematics to the same extent on average. For the

knee, we generally find less flexion during swing and we do not always obtain the extension →
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Figure 4.6 – Optimized joint control signals. The hip, knee and ankle signals are shown in
blue (solid), green (dashed) and red (dotted) respectively. The position plots show both the
reference signal (thin solid) and the resulting (measured) joint angle. Joint angles are shown in
degrees, stiffness in Nmrad−1 kg−1 and damping in Nmsrad−1 kg−1. The const control mode
stiffness is high for both the knee and hip joint, resulting in a close match between reference
and actual joint angles. The step control mode features relatively low stiffness patterns, while
still providing close tracking of the reference joint angle. Both the hip and knee joint tend to
stiffen during heel-strike, presumably to stabilize ground impact.

flexion → extension during early stance. The ankle joint consistently shows more dorsiflexion

as well as a higher peak plantarflexion. Furthermore, it tends to dorsiflex later during swing

than normally observed in human walking. Whereas in normal human walking, the knee

flexion during swing provides sufficient ground clearance, we observe that instead in our

results the prolonged plantarflexion pushes the model upwards to provide ground clearance

for the swinging leg.

However, if we look at the kinematics of the best obtained solution only (instead of averages

over multiple runs), we see relatively high correlation of joint angle kinematics for the hip

and knee between simulation and human data. We obtain Rhip = 0.80,Rknee = 0.83. The ankle

kinematics show low correlation with human kinematics, Rankle = 0.30. It is clear that although

we capture some important aspects of human gait with our optimization, we do not yet explain
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all aspects using our (relatively simple) model.

Looking at the obtained average and best torques for 10 runs of PSO in Table 4.4, we can see

that the step and ppoly control modes perform slightly better than the const control mode,

even if there are a significantly larger number of parameters to optimize. Note that the ppoly

control mode includes the const control mode and should therefore in general be able to find

solutions performing at least as good. However, due to the increased number of parameters,

and the limited number of runs with different initial conditions, we did not obtain better

results than the const mode.

Figure 4.6 shows the optimized joint reference, stiffness and damping control signals for each

of the control modes. Note that the hip and ankle stiffness in the const control mode are

relatively high, while they are relatively low in the step control mode. Furthermore, we see

that for both the const and step control modes, the knee stiffness is very small, being almost

only damped (i.e. exploiting the natural leg dynamics). The obtained joint trajectories match

the control trajectories for const and step, but less so for the ppoly mode. We can see a clear

trend in the stiffness and damping patterns of the step mode. Here the hip and ankle joint

tend to stiffen during heel-strike, while the damping is optimized for low values during swing

(allowing natural swinging motion of the leg). We do not observe these trends as much for the

ppoly mode.

4.1.4 Discussion

In this work we started by posing three hypotheses about the implications of variable impedance

control for human locomotion. We have looked at a minimal model implementation of a hu-

manoid in simulation, and the most simple approximation of energy expenditure. Towards

our first hypothesis, we show that human like gaits can be obtained from optimizing for first

principles only. Characteristics of nominal human gaits such as heel-strike, foot-roll, toe-off

and a 60% stance duration are all observed without optimizing for these characteristics ex-

plicitly. Furthermore, best obtained kinematics show a reasonable correlation to nominal

human joint angles for the hip and knee joints, although less so for the ankle joint. We have

two possible explanations for the mismatch in joint angle kinematics which we should explore

in future work. First, our model is only defined in the sigattal plane, and we observe that one

of the difficulties is obtaining sufficient ground clearance for the swing leg. It is possible that

early during the optimization, solutions are favoured which provide ground clearance in an

unnatural way, simply to stabilize the gait. Another possible explanation for the discrepancy

is that we use a very simple model of energy expenditure, namely torque. Furthermore, all

joints are penalized for torque equally, while it might be more energy costly to generate these

torques at distal joints than at proximal joints. A weighting scheme to penalize torques at

different joints differently can be explored to see how this affects the obtained gait quality. At

the same time, a more sophisticated, biologically inspired model for metabolic cost can be

explored.
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Our second hypothesis poses that even though we do not explicitly optimize for gait quality,

introducing variable impedance implicitly improves gait quality by optimizing only for energy

expenditure. Towards this hypothesis we observe some trends, in particular in the step control

mode in terms of improved joint angle consistency (ankle). Furthermore we observe a relatively

low stiffness pattern with a tendency to stiffen the hip and ankle joints during heel strike, and a

damping pattern which decreases damping during swing. Furthermore, there is clear evidence

for the exploitation of the natural leg swing dynamics by the knee joint, as it shows to have

optimized a very low stiffness. During the stance phase, the knee has a significantly increased

damping in the step control mode which breaks the knee motion. This is also observed during

normal human locomotion (Martinez-Villalpando and Herr, 2009) and one of the principles

of passive dynamic walking (McGeer, 1990; Wisse, 2004).

Although we expected to see a clear reduction in torque when introducing variable impedance

in the controller, we observe smaller improvements in overall torque consumption than we

initially expected. We observed a notable reduction of torque in the step mode, but did not see

the same (or further) reduction for the ppoly mode, indicating that our optimizations might

easily get stuck in local optima.

This work was published in van den Kieboom and Ijspeert (2013). A video of the resulting

optimized walking gait can be found at http://thesis.codyn.net/videos/human_walking.

4.2 CoMan humanoid robot gait optimization

The work presented in the previous section shows that given the (bio)mechanical structure

of a human adult-sized person, global human gait characteristics can be obtained from

optimization of high-level objectives and simple control laws only. In this section we present

work which continues in this direction, looking at several new aspects.

1. We want to know how well this method translates to a humanoid robotics platform. Hu-

manoid robots are certainly inspired by human physiology, but they also have significant

differences. In particular, we are interested in looking to apply this method to a model

of the CoMan (Compliant Humanoid) robot, which is not only of smaller scale than an

adult sized human, but also has different inertial properties, power requirements and

importantly, feet.

2. In our previous study we were specifically optimizing for walking at an average – and

supposedly energy efficient – walking speed. Doing so would let us simply minimize for

overall torque during walking to obtain a sense of energy efficiency. However, for the

CoMan we do not have a good estimate of the walking speed at which the system enters

an energy efficient mode. We will therefore look at optimizing/discovering the optimal

walking speed simultaneously.

3. The objectives previously used to optimize for a human gait included various artificial

objectives which stabilized the optimization process, avoiding exploitation of unphysical
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dynamical behavior. We expected that these issues were caused by the contact model

and we address these issues in this section.

4. Finally, we expect that the role of variable impedance control becomes more prominent

if we look at perturbations during gait. In the previous section we could see a trend

towards variable impedance being optimized around the moment of heel-strike, which

can be seen as a particular type of perturbation. Here we will explore this by introducing

a periodic force perturbation during the swing phase.

The remainder of this section is organized as follows. First, we will briefly describe the CoMan

humanoid robot. Then we will continue by detailing the cȯdγn model based on the robot

specifications. What follows then is two studies. The first will look at reproducing the results

obtained in the previous section using the same methods, while optimizing walking speed

and reducing the objective complexity. Having optimized for walking with the model of the

robot, the second study will then look at the influence of perturbations on the optimization of

variable impedance control laws.

This work was carried out as part of the WALK-MAN project. WALK-MAN is funded under the

European Community’s 7th Framework Programme: FP7-ICT 611832. Cognitive Systems and

Robotics: FP7-ICT-2013-10

4.2.1 CoMan humanoid robot platform

The CoMan is a child size, humanoid robot which has been developed by the Istituto Italiano

di Tecnologia in Genoa as part of the AMARSI European project. Shown in figure 4.7, the

robot is approximately 1.2m tall, comparable to a 6-7 year old human child, and features 23

degrees of freedom, of which there are 6 in each leg. The CoMan, as its name suggests, has

been specifically designed to be an intrinsically compliant robot using series elastic actuators.

The version shown in figure 4.7 has compliant joints in the shoulder pitch/roll, elbow pitch,

waist pitch/yaw, and hip/knee/ankle pitch joints. Each actuator has a maximum torque limit

of 30Nm and a velocity limit of 6rads−1. Modeled after a human child, it has the same limb

length ratio’s as an actual human child. The weight of the robot is approximately 28kg. Note

that the average weight of a human child of the same size is around 22kg to 25kg (Cavagna

et al., 1983) and the CoMan is thus slightly heavier.

The robot is fully sensorized, with proprioception at every actuator, a 6-DOF force/torque

sensor placed under each foot, an IMU at the base of the robot (measuring velocities, accel-

erations and direction) and finally torque sensors at each actuator. This allows the robot to

operate in full torque control. This is essential for the implementation of (virtual) impedance

control laws on the platform.
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(a) IIT version (without covers) (b) EPFL version

Figure 4.7 – Developed by the Istituto Italiano di Tecnologia, the CoMan is a child size, hu-
manoid robot with series elastic compliant actuators. It has 23 degrees of freedom, among
which there are 6 in each leg. a) an earlier version of the robot without its covers (image taken
from the IIT website). b) the CoMan version at EPFL.

4.2.2 Modeling the CoMan robot

The model for the CoMan is constructed in the same way as the model of the human in the

previous section. The kinematic and inertial data is based on data retrieved from the CAD

model of the CoMan, provided by the IIT. Since the data is provided for the full 3D CoMan, we

composite all the bodies corresponding to the joints that we do not model in 2D. Figure 4.8

lists the kinematic and inertial quantities of the model. Again, the center of mass locations

CoMx and CoMy as well as the segment length l are given in proportion to the total robot

height (1.2m). The masses m are given proportional to the total mass of the robot (28kg).

On comparison with the quantities shown in figure 4.1 (i.e. for the adult size human model),

we see that the largest discrepancy between the two models is caused by the center of mass

location of the torso. In the CoMan, the center of mass is located much higher than for an

average person, which can have a negative impact on the stability. The reason for this is the

fact that there are 6 heavy motors located at the very top of the torso (2 of these are deactivated,

but present motors to control the neck). Additionally, the torso also contains the control PC

and several communication and controller boards.

Another important difference, in particular for locomotion, can be found in the dimensions
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Joint CoMx CoMy l m rg

torso 0.00 0.18 n.a 0.530 0.11
up leg 0.00 −0.08 0.19 0.132 0.09
low leg 0.00 −0.07 0.17 0.052 0.05
ankle 0.00 −0.02 0.08 0.051 0.03

0.07

0.03

1.20m

Figure 4.8 – Kinematic and inertial properties of the CoMan model. Kinematic quantities are
proportional to the total model height and the mass is given proportional to the total model
mass. rg indicates the segment radius of gyration, from which the inertia can be derived.
The schematic on the right shows approximate center of mass locations and contact point
locations on the foot (triangles).

of the foot. Comparing l of the ankle (i.e. the distance from the ankle rotation to the sole of

the foot) in both figures 4.1 and 4.8, then this distance is around 3% of the total height for

adult size humans, but 8% of the total height of the CoMan. The foot on the CoMan is also

completely rigid. For this study, which is in the sagittal plane, the rigidity is not important

since we use point contacts. however, the length of this rigid foot is 16% of the total robot

height. Looking at figure 4.1, we can see that the nominal foot length would be approximately

10% of the total body height. The CoMan feet are therefore significantly disproportionate with

respect to its height.

We initially did simulations with a model of the feet corresponding exactly to the dimensions

of the feet on the real robot. This however led to unsatisfactory results. None of the simula-

tions resulted in human like gaits, since proper heel-strike, foot-roll and toe-off could not

be achieved with such large contact surfaces. Due to the location of force torque sensors in

the feet, we cannot easily change the distance from the ankle rotation to the sole of the foot.

However, the foot contact plates are easily replaced. We therefore adopted a foot length closer

resembling human morphology in our model, as shown in figure 4.8. It should be noted that

at the time of writing a corresponding real foot has not yet been manufactured.
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Contact modeling

As the hard contact model in cȯdγn was not yet available at the time of the previous study, the

soft contact model was used instead (see section 2.6.10). We managed to avoid unphysical

behavior of this model by carefully tuning the contact coefficients and adding additional,

artificial objectives to penalize unrealistic behavior. This however led to a formulation of the

optimization which was more complex than we originally had hoped to achieve.

In this study, we will make use of the hard contact model which since has been available in

cȯdγn. As seen in figure 4.8, we also no longer need to model multiple contact points for each

foot (which previously made the soft contacts more stable), but instead can model contacts

on just the end-points of the two feet. This led to significantly more stable simulations and

made an otherwise important tuning step unnecessary.

The basic CoMan cȯdγn model is provided in appendix A (see model A.1).

4.2.3 Study I: CoMan gait optimization

In a first study, we are interested in replicating the results obtained on the adult sized human

model for the CoMan humanoid robot. We will address the first three of the objectives listed

in section 4.2, namely 1) application of the gait optimization method to a humanoid robot, 2)

simultaneous optimization of walking speed and 3) reducing objective complexity. Since there

are some significant differences in the physiology of the robot when compared to humans, we

expect to see this reflected in the optimized controllers and resulting gaits. By applying the

exact same methods as developed earlier, we can compare obtained results directly with our

previous study.

Optimization

We will use the exact same optimization procedure as used in the last study, i.e. particle swarm

optimization with lexicographic ordering (see section 4.1.2 for a more thorough discussion).

Due to the stable behavior of the hard contact model, we can remove the objectives introduced

to avoid unphysical behavior from the soft contact model. We have therefore removed the

optimization of the stdspeed (walking at a constant speed) as well as the non-contact-time

objective (which stated that at least one contact had to be active at all times).

As stated earlier, we do not know a-priori at what speed the CoMan enters a natural mode of

locomotion. Instead of optimizing for a specific walking speed, we instead adopt the concept of

cost of transport (Schmidt-Nielsen, 1972). The cost of transport is a non-dimensional quantity

which expresses the energy efficiency of transportation, allowing normalized comparison of

energy efficiency. It is defined by

cot = P

mg v
, (4.2)
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where P is the power input to the system, m is the total mass, g is gravity and v is the velocity

of the system. In our case, we are only comparing the cost of transport between the same

systems, and therefore omit mg from our measurement. We thus simply use

cot = P

v
(4.3)

Note that power is energy W over time, and velocity is distance d over time. An equivalent

cost of transport can therefore be obtained from

cot = W /t

d/t
= W

d
(4.4)

For human walking, this energy W is measured from metabolic cost (Anderson and Pandy,

2001). However, since we are looking at a robotics system, and we are not currently interested

in electric efficiency of the robot, we use mechanical cost of transport instead. In other words

P =
∑

i
τi q̇i , (4.5)

where τi and q̇i are respectively the torque and angular velocity of joint i .

Since we allow optimization to find a desired walking speed, we now also need to optimize

for the walking frequency. We therefore no longer constrain walking frequency at 0.9Hz (as

described in section 4.1.2). Instead, we allow this frequency to be optimized between 0.4Hz

and 1.2Hz. The range is intentionally large, to allow for slow (but large) steps and fast (but

short) steps.

The lexicographic objectives can then be formulated as shown in table 4.5. Note that we

have removed all the artificially introduced objectives. For the second objective, instead of

optimizing for a specific speed, we instead optimize for a certain minimum speed. This forces

the optimization to be at least moving forward before optimizing the next objective. We

emperically observed that without setting a minimum speed, the optimizations would often

converge to local optima in which no walking was achieved. We therefore set a minimum

speed of 0.3ms−1.

Table 4.5 – Lexicographic Objectives

Objective Until

1. time time = max time
2. speed speed ≥ min speed
3. -assist time assist time = 0
4. -cot ∞

To enforce plausible solutions with the potential to be applied on the robot, we limit the output

torque to 30Nm. Furthermore, the maximum controlled stiffness is set to 1500Nmrad−1 and
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controlled damping is limited to a maximum of 30Nmsrad−1.

Results

All simulations were run using the same methods as in the previous section. For each control

mode (const, step, ppoly), we ran 10 optimizations with random initial conditions.

const

step

ppoly

stance (≈ 50%) swing (≈ 50%)

Figure 4.9 – Snapshots of one gait cycle of the best obtained solutions from optimization
for each control mode. The gait is shown from heel-strike to heel-strike. Note that gaits are
normalized to show a single step, their respective walking speeds are 0.48ms−1, 0.44ms−1 and
0.33ms−1.

Figure 4.9 shows snapshots of the best gaits obtained for the three different control modes.

There are several important observations to make. First, all three control modes obtain quali-

tatively human like gaits. Similar to the adult size human optimization, most global human

gait characteristics, such as heel-strike, foot-roll, and toe-off are obtained. Both step and

ppoly control modes obtain gaits without knee flexion during stance phase, unlike what can

be observed in the const mode. Interestingly, all obtained gaits consistently show a stance

duration of 50%, whereas during our adult size human simulations we consistently obtained

a stance duration of 60%. This difference can be explained by the lack of a toe, which in the

human model would prolong the end of the stance phase.

With regard to walking speed, the const and step control modes both optimize for rela-

tively faster walking (0.48ms−1 and 0.44ms−1 respectively), as compared to the ppoly mode

(0.33ms−1). Table 4.6 shows obtained frequency, speed, step length and cost of transport for

the best solutions of each control mode. The best gait, in terms of cost of transport, is obtained

using the step controller, while the ppoly controller shows significantly worse performance.

The obtained walking speeds and corresponding frequencies are very similar between the

const and step controllers, and the natural walking speed of the CoMan (from a mechani-

cal point of view) seems to be around 0.45ms−1, or 1.6kmh−1. See B.1 in appendix B for a

rendering of the walking sequence of the optimized step controller.

Compared to data measured from children (Cavagna et al., 1983), the obtained gaits here are

much slower and produce larger steps than observed normally in children of the same size as

the robot. We attribute this difference mainly to the difference in center of mass location of

139



Chapter 4. Optimization of natural human gait

Table 4.6 – Gait speed characteristics of best obtained solutions

Type Frequency (Hz) Speed (ms−1) Step length (m) Cost of transport

const 0.64 0.48 0.74 40.5
step 0.63 0.44 0.69 27.8
ppoly 0.53 0.33 0.63 64.9
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Figure 4.10 – Optimized joint control signals. The hip, knee and ankle signals are shown in
blue (solid), green (dashed) and red (dotted) respectively. The position plots show both the
reference signal (thin solid) and the resulting (measured) joint angle. Joint angles are shown in
degrees, stiffness in Nmrad−1 kg−1 and damping in Nmsrad−1 kg−1.

the torso (which is much higher than it should normally be) and the torque limitations of the

platform.

Figure 4.10 shows the control signals, reference position, stiffness and damping optimized

for the three control modes. Note that the desired reference joint angles are closely followed

by the actual joint angles. The resulting control therefore seems to be largely kinematic. We

do not observe exactly the same trends as in the previous study with respect to the obtained

stiffness patterns. Previously, we noticed a trend towards increased stiffness at heel-strike,

presumably to stabilize the ground reaction forces during impact. However, due to the hard
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contact model, we do no longer observe this trend.

Figure 4.11 shows the control output torques corresponding to the impedance control law

output from the control signals. As can be seen, most output torques stay within the CoMan

actuator limits. In particular, the output torques for the step controller look promising when

taking torque limits into account. A substantial amount of torque is required on the ankle

during mid to end stance. This is to be expected, since the ankle has to push the body forward.

However, these torques could possibly be reduced by a better designed foot, in particular the

distance from the ankle joint to the ground.
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Figure 4.11 – Resulting control torques for the best solutions obtained for the three control
modes. Torques are within limits in most cases, except for the hip torque in the ppoly mode
and the knee in the const mode. The step torques are within range of the limits for all joints.
Large torques are consistently required during mid to end stance for the ankle.

Discussion

The objective of this first study was to use the methodology developed in section 4.1 to optimize

a natural gait for a humanoid robotic platform. We successfully did so while 1) reducing the

complexity of the objective function such that only high level objectives remain, and 2) no

longer optimizing for a specific, known walking speed. This shows that the method is both

robust and does not depend on strictly close-to-human properties of the system. Since we
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have shown in our previous study that the method is a reasonable model for human walking,

we can conclude with some certainty that the obtained results for the CoMan platform are

equally reasonable.

We have also shown that although qualitatively well performing gaits can be obtained for

the CoMan, it remains to be seen if the obtained controllers can be transferred to the robot.

It is clear that the design of the platform has not been guided by locomotion performance,

in particular when looking at the torso mass distribution and the current design of the foot.

Although it would be difficult to lower the torso mass, it would be worth investigating the

design of new feet specifically suitable for locomotion. We further believe that the presented

methodology of optimization of human like gaits could aid in this effort by validating or even

co-designing (as we will see in chapter 5) new feet in simulation.

A video of the resulting optimized walking gait for the CoMan robot can be found at http:

//thesis.codyn.net/videos/coman_walking.

4.2.4 Study II: The effect of impedance control during perturbations

In the previous section we have seen that the developed methodology for optimizing for

humanoid gaits using impedance controllers by use of particle swarm optimization with

lexicographic ordering can be used effectively to optimize for human like gaits for the CoMan

humanoid robot platform. Although we have hypothesized that impedance control can con-

tribute to the stability and robustness of the gaits, we have not been able to find significant

evidence for it in our previous studies. In hindsight, this might not be surprising. Even though

we observe certain trends towards improved performance (in particular when using the step

controller), variable impedance cannot be exploited during steady state.

Our next hypothesis, then, is that variable impedance becomes more prominently useful

in the face of non-steady state locomotion. When looking at impulsive perturbations (i.e.

non prolonged perturbations), such as force pushes, intuitively speaking it is often better to

be compliant in the direction of the perturbation. Doing so allows for minimization of the

dynamical impact of the perturbation. Or so we expect. To test for this hypothesis, we devise a

new set of experiments which optimize variable impedance controllers for locomotion under

periodic perturbation.

Perturbations

The type of perturbations under which we will study the effect of variable impedance control

is a periodic, impulsive force perturbation on the swing leg. In our case, it is important that the

perturbation is periodic since we are still optimizing time dependent signals. We expect to see

a clear effect of impedance modulation during the period in which we apply the perturbation

forces. Furthermore, a force perturbation during the swing phase could intuitively benefit

from a variable impedance controller. We hypothesize that we will observe reduced stiffness
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during the period of possible perturbation, such as to give in to the impulsive force without

disturbing the stance dynamics.

Force perturbations are applied on the foot in the horizontal direction. The magnitude of the

force and the duration of the impulse are sampled from a normal distribution. In this study we

use a force magnitude ofN(80,5)N and a force duration ofN(0.15,0.05)s (whereN indicates a

normal distribution). The onset of the perturbation is sampled from a uniform distribution

each time a leg goes into swing phase.

Optimization

We use the same optimization methodology as used in the previous section. However, since

we are now subject to stochastic perturbation forces during locomotion, we need a procedure

by which to ensure that the performance of a particular controller is not dependent on the

specific stochastic behavior during a single run. Therefore, we run each controller N times

using a different random seed and thus obtain different perturbation forces. We then use the

worst performance as the final objective value of a solution. In all experiments, N was set to 3.

Since we have previously obtained various controllers which perform state-stead locomotion,

we will here reuse this information to bootstrap the optimization under perturbation. To do

so, we take the 3 best solutions from each previous simulation run, resulting in a total of 30

solutions with known initial conditions in the initial population of the perturbation study.

The remainder of the population is created from this initial population by applying random

mutations on all parameters in a uniform manner. We have used a mutation magnitude of

10% for all parameters for this study. The resulting population should ideally be in the vicinity

of potential solutions, or at least more so than when starting with a fully randomized initial

population.

Results

We begin by looking at the fitness progression of the runs with the best results for each of the

three control modes. In particular, we look at the amount of time spend and progression of

the last lexicographic objective (i.e. optimization of cost of transport) for each control mode,

which is shown in figure 4.12.

There are a few important observations which can already be made from looking at these

graphs. First, the step control mode spends far more time optimizing for the cost of transport,

i.e. the final objective, than the other control modes. In fact, ppoly hardly manages to reach

the final objective, failing to stabilize the gait. Table 4.7 summarizes these observations.

What is interesting to observe here is that the best obtained cost of transport follows the same

relative trend as observed in our previous study, however is approximately 5 times larger as

before. Since the locomotion speed has only changed marginally, this means that there is a
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Figure 4.12 – Fitness progression while optimizing for the last lexicographic objective, cost
of transport, for the run with the best obtained fitness for each control mode. From top to
bottom, the progression of respectively const, step and ppoly is shown.

Table 4.7 – Optimization summary

Type Best cot Best speed (ms−1) Average % final objective

const 165 0.37 14%
step 154 0.38 58%
ppoly 192 0.3 9%

significant increase in power consumed due to the applied perturbations.

When looking at the reason why the const and ppoly optimizations spend a significantly
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smaller amount of time optimizing for cost of transport we see that those control modes are

not able to consistently handle the perturbations. Even though each solution is evaluated

3 times, keeping its worst performance as the final fitness, when we rerun those solutions

with different perturbations we do not obtain again the same performance. In fact, most of

the time, those solutions fall back to the assist time objective, unable to self-stabilize. This is

not the case for the step control mode which shows much more reliable performance under

perturbation. Due to the stochasticity of the perturbations, solutions which were performing

well before, might not do so in the future. However, standard Particle Swarm Optimization

does not incorporate this into the optimization and thus might be attracted to solutions which

are in fact performing less than previously observed.

Although this is a problem which could be addressed, it is not the primary objective of this

study. The problem occurs for all control modes, and we thus are not biased by it towards

a particular mode. The main objective of this study is to determine whether the advantage

of joint level variable impedance control emerges while under perturbation without explicit

optimization for it. We therefore turn to look at the optimized control patterns for the const

and step control mode.

Figure 4.12 shows the control signals for the best solutions of the const (left) and step (right)

control modes. The most interesting observation here can be made when looking at the

stiffness and damping patterns of the step mode. Unlike in our previous studies, here the

stiffness and damping patterns show a marked correspondence with the perturbation signal.

The change between the two values of stiffness and damping shows a clear correlation with

the window of possible perturbations.

In particular, we see that the stiffness of the knee increases (slightly) during the period of

possible perturbation, while the stiffness of the hip shows a large decrease at the end of

perturbation. The opposite is observed for the damping , which increases for the knee during

late swing, while it decreases for the hip during early swing.

The obtained correspondence between the perturbation and the change of impedance is clear,

and this particular solution has optimized in particular a decrease in hip stiffness and damping

during period of the swing phase where perturbations can occur. Figure B.2 in appendix B

shows a single step from the walking sequence of the step controller as shown in figure 4.13.

A video of the walking gait under perturbation can be found at http://thesis.codyn.net/videos/

coman_perturbation.

4.3 Conclusion

In this chapter we have explored the optimization of natural human gait from high-level objec-

tives, such as walking at a certain speed while minimizing for a measure of energy expenditure.

We showed that using Particle Swarm Optimization (see section 3.1.3) and lexicographic or-
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Figure 4.13 – Optimized joint control signals of the best solutions for the const and step control
modes during the last two periods of locomotion. The hip, knee and ankle signals are shown
in blue (solid), green (dashed) and red (dotted) respectively. The position plots show both the
reference signal (thin solid) and the resulting (measured) joint angle. Joint angles are shown
in degrees, stiffness in Nmrad−1 kg−1 and damping in Nmsrad−1 kg−1. The magnitude of the
perturbation force during walking, as applied to the ankle, is shown in the bottom plot. The
shaded areas indicate the swing phase.

dering (see section 3.3.2) of optimization objectives, a natural, stable gait corresponding to

an adult sized human model can be obtained. We hypothesized that variable impedance

control could improve performance of the obtained gaits, but only found small trends towards

improved performance using a simple step variable stiffness and damping controller.

Having verified that our proposed optimization method works well to (re)discover natural

human gait for an adult sized human model, we applied the exact same optimization method-

ology (albeit with different objectives) to a humanoid robotic platform, the CoMan in section
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4.2. Although this platform resembles a child size human, several of its morphological proper-

ties differ from that of a human person. In particular, the feet and the center of mass of the

robot are significantly different. We show that by changing the dimensions of the feet, we can

again obtain natural gait while additionally optimizing for the cost of transport instead of

torque requirements. This allows the optimization to find the optimal speed to power ratio for

this particular model.

Finally, in our last study in section 4.2.4 we investigate further the possible role of variable

impedance control by introducing perturbations on the swing leg during locomotion. By

making the perturbations periodic, we can still optimize for an open-loop variable impedance

controller allowing for direct comparison with our previous studies. We show that indeed under

perturbation, the role of variable impedance becomes significant, leading to more reliable

perturbation rejection by reducing stiffness and damping of the hip during the expected

period of possible perturbation. It should be noted that we do not assume to reliably obtain

conclusive results on the type of impedance modulation necessary for perturbation rejection.

Rather we observe and conclude that allowing optimization of modulation of impedance

allows for improved robustness against rejection of perturbation.

Although using an open-loop controller allowed us to systematically explore the role of vari-

able impedance, it is clear that an actual controller should modulate impedance based on

feedback of an observed perturbation. There is little gain to be had from variable impedance

during steady state locomotion, but our last experiments showed that modulation of stiffness

and damping could provide for a simple mechanism to reject (although marginally) certain

perturbations and that our optimization method is able to exploit the impedance modulation

properly. Future work would include studying feedback controllers to modulate impedance

based on sensor information, which could further increase locomotion robustness.

Finally, we only show results here obtained in simulation. It remains to be seen if these same

results can be obtained on the real platform. There are of course additional difficulties for

transferring our controller. First, all our simulations are done in 2D, while the robot requires a

controller for the third dimension. Second, we obtain marginally stable gaits in simulation

since we do not explicitly control the global stability of the robot. Even though the perturbation

study shows that the controller is able to self-stabilize under certain perturbations, we do not

expect this to be sufficient when applying the same controller on the real robot. One possible

direction would be to use our controller as a nominal pattern generator while providing an

additional stabilization controller which modulates this pattern such that the complete control

becomes globally stable.
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Having developed all of the necessary methods for the modeling of dynamics, optimization of

continuous parameters within discrete sets of solution classes, and having investigated the

role of impedance control for (re)discovering nominal human gait, we now turn to the last

topic of this thesis. Although there are many different areas to which robotics research can

contribute, few are of arguably greater potential impact on society than those concerned with

the development of wearable robotics such as prosthetics and orthotics research. This is not

necessarily a new field of robotics research, since many successful prostheses and orthoses

exist today, both for the lower and upper extremities. Most of these are however either purely

passive, or have only limited powered capabilities. There has been a recent increase in the

research and development of active or powered wearable devices, now that technology has

enabled more compact actuators and higher power density energy supplies.

We are particularly interested in the development of powered, wearable robotics for the

assistance of the lower extremities. Lower extremity wearable robots can be divided into two

main categories, those meant for 1) the augmentation of an able-bodied person and 2) for the

assistance of a person suffering from an impairment of the lower limbs (for example hemi- or

paraplegics). Several wearable robots have been developed in both categories in recent years.

In the first category, probably the most well known examples include the BLEEX (Berkeley

Exoskeleton) (Kazerooni and Steger, 2006) (figure 5.1a) and the Sarcos (figure 5.1b), both of

which were a result of a DARPA sponsored program, Exoskeletons for Human Performance

Augmentation. Both of these exoskeletons are capable of above human performances in terms

of load bearing and weight carrying. Although one of the primary motives for the development

of these type of exoskeletons is in the military, they could also be used for industrial purposes,

or disaster scenarios. A different approach was taken by the MIT exoskeleton (Walsh et al., 2006,

2007) (figure 5.1c), which focused on a semi-passive design in which passive dynamics were

exploited in an effort to create a much easier to wear and more energy efficient exoskeleton.

Finally, the HAL-5 exoskeleton (Guizzo and Goldstein, 2005) (figure 5.1d) is another exoskele-

ton which takes a different direction yet, in which control is derived from measurement of

EMG of the operator. Although initially shown in demonstrations for load carrying, it has been
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(a) BLEEX (b) Sarcos (c) MIT (d) HAL

Figure 5.1 – Existing exoskeletons for human augmentation. From left to right a) the BLEEX
exoskeleton (source http://bleex.me.berkeley.edu/), b) the Sarcos exoskeleton (source http:
//robohub.org), c) the MIT exoskeleton (source Walsh et al. (2007)) and d) the HAL exoskeleton
(source http://www.cyberdyne.jp/)

designed specifically for the assistance of impaired and elderly persons during daily tasks. It

is also one of the first exoskeletons to be successfully commercialized and has recently been

used in a number of hospital settings.

(a) Ekso (b) ReWalk (c) Rex

Figure 5.2 – Lower extremities orthosis used for rehabilitation and support of paraplegics.
From left to right a) the Ekso by Ekso Bionics (source http://www.eksobionics.com), b) the
ReWalk from Argo Medical Technologies (source http://rewalk.us, courtesy of Argo Medical
Technologies) and c) the Rex from Rex Bionics (source http://www.rexbionics.com)

This brings us to the second class of wearable robots, those used for rehabilitation or assistive
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purposes. The aim of these is not to elevate human performance, but rather provide assistance

or support to those who are impaired or in need of rehabilitation. This is arguably of greater

sociological importance than the creation of “superhumans”, and there are approximately 5

million people in the United States alone who could benefit from a lower extremities orthosis.

There are a few recent success stories in the development of exoskeletons for the assistance

of paraplegics allowing standing and even walking. The Ekso (formerly called eLegs) is being

developed by Ekso Bionics (previously Berkeley Bionics), and provides paraplegics with the

ability to walk again (figure 5.2a). Crutches have to be used for stabilization since the device

does not provide self-stabilization at the moment. The ReWalk (figure 5.2b), from Argo Medical

Technologies, employs very much the same design as the Ekso, as both use electrical actuators

(instead of hydraulic, which most human performance augmenting exoskeletons use). Similar

to the Ekso, paraplegics can use the ReWalk to walk with crutches for stabilization. Wearable

robots which self-stabilize, i.e. do away with the need for crutches, are also being developed.

The Rex (figure 5.2c), developed by Rex Bionics, is a slightly bulkier wearable robot, but

provides full independent movements for users who were previously restricted to using a

wheelchair.

All of the above mentioned exoskeletons, whether used for carrying large loads, rehabilitation

or assistance all have one thing in common. Their design is anthropomorphic, i.e. they follow

human morphology exactly. There are many advantages to such a design. First, it is a relatively

simple design from a kinematic perspective since segment lengths and joint locations are

known beforehand. Secondly, the acceptance of an exoskeleton which follows the human

limbs is arguably much higher than for a possibly non-anthropomorphic one, i.e. people feel

socially more comfortable wearing a device that does not significantly alter their appearance.

On the other hand, some devices, such as the Flex Foot Cheetah (Nolan, 2008) have received

much attention and although not anthropomorphic, are generally viewed positively. However,

here we focus on social acceptance in the nominal case, where generally people prefer to be

“normal”. Of course, what is socially acceptable is a contemporary notion and changes over

time.

On the other hand, a non-anthropomorphic design for a wearable robot could have significant

advantages on its own. Such devices have more kinematic freedom and have the potential of

providing improved dynamic behavior with regard to interaction with the user. This additional

level of design freedom can improve user comfort (Schiele and van der Helm, 2006) by avoiding

issues such as joint misalignments causing uncomfortable interaction forces between the

wearable device and the person. Of course, they are also inherently more complex in their de-

sign, requiring more joints, connecting segments and overall mechanics. Additionally, special

care has to be taken to avoid singularities which are bound to occur in non-anthropomorphic

parallel structures.

Since the design of such devices can be difficult and non-intuitive, we aim in this work to pro-

vide a methodology for the iterative design of non-anthropomorphic, lower extremities wear-

able robots through the use of evolutionary inspired optimization algorithms, co-designing
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both the wearable robot structure as well as its control. There are many important aspects

to the design of a wearable device, aimed to be used for rehabilitation or assistive purposes.

Although we are fully aware of the importance of device interaction interfaces with the user,

device aesthetics for general acceptance and user adaptive control, we limit ourselves in this

study to the development of a methodology for the design of the mechanical structure and

non-interactive control only. See Ronsse et al. (2010, 2011a,b,c) where we explore adaptive

control for wearable robot assistance using central pattern generators.

In the following sections we first describe our initial studies towards developing our method-

ology. Then we continue to detail the experimental design method, modeling of the non-

anthropomorphic wearable robot, specifics of the optimization procedure and finally the

obtained results from this study.

The work presented here has been carried out as part of the EVRYON European project from

the European Community’s Seventh Framework Programme FP7/2007-2013 - Future Emerging

Technologies, Embodied Intelligence, under the grant agreement no. 231451 (EVRYON).

5.1 Initial study

In the seminal work of Karl Sims (Sims, 1994b,a), creatures were evolved to perform certain

tasks in a competitive environment. The novelty was that not only were the creatures’ con-

trollers evolved, but their morphologies were as well. It showed that on a variety of different

tasks, such as walking, swimming and jumping, strategies would emerge, both in morpholog-

ical terms and control, which would be hard to design manually. Similarly, in Hornby et al.

(2001) stick like robotic lifeforms were evolved using Lindenmayer systems (Lindenmayer,

1968) in which repetitive structures can be encoded with a small number of parameters.

It has been shown that co-design of morphology and control can be beneficial in terms of

optimizing for the efficiency of a system. In Paul and Bongard (2001) it was shown that when

optimizing for the morphology of a simple bipedal walker, increases in performance could be

observed with respect to the original bipedal morphology. Here we hope to apply these same

principles to the design of a wearable robot.

When we first started to explore the feasibility of this approach we simply tried optimiz-

ing for the morphology and control of bipedal like “creatures”, only concerned about for-

ward locomotion. The results can be seen in the movie provided at http://thesis.codyn.net/

videos/codesign/crazybipeds.mov. We then did the same thing, only this time for evolving

quadrupedal creatures, for which the results can be found at http://thesis.codyn.net/videos/

quadruped.avi. Of course, these were simple “toy” like example optimizations, but there are

some important observations to be made:

1. As the first movie shows, allowing the optimization of morphology can lead to surprising

and unintuitive solutions for the task of locomoting forward.
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5.1. Initial study

2. Many different solutions exist which, while performing the same in terms of locomotion

speed, achieve this in very different ways.

3. If the only goal is to locomote forward, many solutions emerge which could never be

realized due to joint limits, fast motion, inter collisions, etc. Therefore, care has to be

taken to optimize for the appropriate objectives to obtain a desired result, and with the

right constraints.

4. It is possible to retrieve, without prior specification of a specific gait, a natural locomo-

tion gait as in the case of the quadruped in the second movie. Here we did not specify

beforehand the phase between the limbs, however a natural gallop appears in which the

morphology has evolved such as to form a primitive foot support structure.

This initial study verified that it is possible to obtain surprising and novel methods of locomo-

tion while at the same time not preventing the occurrence of natural locomotion, if it turns

out to be the most efficient solution (according to the objectives optimized for).

After this initial experiment, we continued with developing the co-design of a wearable robot

structure for human assistance. In that study (of which the details are not presented here)

we used Webots (Michel, 2004) (an ODE based simulator) to simulate human models with

augmented parallel structures for the task of locomotion. Analyzing the results from these

simulations, we observed that although structures were able to locomote properly, various

issues prevented the use of these structures as the basis for a prototype of a wearable robot.

In particular, optimizations almost always made use of mechanically singular configurations

in order to obtain efficient locomotion, which was highly undesirable for the real device.

Additionally, we also observed that optimizations could lead to the occurrence of large internal

forces on the human model joints. Unfortunately, ODE does not allow for reliable determina-

tion of these internal forces. This made it difficult to incorporate minimization of these forces

as an objective during optimization, since a physically representative threshold could not be

set correctly.

The results of these simulations can be found at http://thesis.codyn.net/videos/codesign/first.

These models immediately show the difficulties of using these type of optimizations for the

co-design of a wearable robot. Most of the solutions would either be hard to realize realistically,

would involve fast moving parallel (sub)structures or would not be acceptable to wear in a

social environment. This also shows that, as suggested in Paul and Bongard (2001), this type of

design methodology is better used as an iterative design input, rather than a final solution. Of

these early simulations http://thesis.codyn.net/videos/codesign/first/exo823_fast.avi is of

interest since it features a structure which is close to the body but nevertheless is of an intricate

parallel design which leads to reasonably efficient transfer of energy from the wearable robot

joints to the human body. Nevertheless, it also made use of singularities in the kinematic

structure which is why it was finally discarded along with the other solutions.

These results set us on a new path. Intrigued by the possibilities of a non-anthropomorphic

design, we set out to develop a robust, reliable and open simulation environment in which we
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could iteratively design these type of structures without the restrictions imposed by existing

simulation software. This finally lead to the development of cȯdγn which provides all of

the necessary tools for modeling and simulating closed loop parallel structures, measuring

of constraint forces and accurate contact models. In the remainder of this chapter we will

describe the co-design of a non-anthropomorphic wearable robot for the lower extremities

using our previously developed tools.

5.2 Design

The co-design of both the morphology and the control of a wearable, lower limb robot for the

task of steady state locomotion is a complex optimization problem, especially when taking

an open-ended approach as proposed here. The approach that we adopt is to develop a

methodology for the co-design of wearable devices providing an open-ended and iterative

method to automatically explore possible designs and complex structures. However, the result

of this co-design is not a finalized product, but rather provides insights into the possibilities

of new designs that would have otherwise been difficult to achieve. To keep the problem

tractable, we simplify the process by imposing a number of constraints and some assumptions.

We believe that these assumptions do not diminish the validity of the approach, although

it does indicate that there are certain limitations to the scale at which our method can be

applied. We will discuss this in more depth in section 5.6. More specifically, we introduce the

following constraints and assumptions:

1. Sagittal: As with our previous studies, we will only consider the sagittal plane, i.e. we

focus on walking in the 2D plane. Additionally, we ignore for the moment inter collisions

between segments of the human body and the wearable robot under the assumption

that there are ways to offset parallel segments in the y-direction.

2. Joints: We only consider a wearable robot for actuating the hip and knee, leaving the

ankle unactuated by the wearable robot. Although the ankle is important during walking,

we assume that it could be actuated anthropomorphically, and the design is not part of

this study.

3. Structure: Wearable robot joints are connected through simple, rigid bars and the num-

ber of degrees of freedom, per leg, is exactly 2. We consider the construction of the

wearable robot from 3 joints and 4 segments. Note that more complex structures (i.e.

with more joints and more segments) could also be considered without loss of generality.

Here we follow constraints imposed by EVRYON.

4. Actuators: We assume perfect torque actuators and ignore possible effects from the

motor dynamics. Since there are two DOFs, we will have two actuators per leg.

5. Attachment: The wearable robot is attached to the human body in a perfectly rigid

manner. The interaction interface between the human body and a device is important,

both ergonomically and because it is responsible for transferring forces for a real device.

Here however we choose not to focus on this aspect of the design.
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As can be seen from this list, there are a fair number of important aspects of wearable robot

design that we do not choose to address. We have a strong focus on the exploration of robot

morphologies and the design methodology, while focusing less on the practical implications

of building such a system.

To continue, we will first look at the family of wearable robots that are the result of our design

choices listed above, in the form of their topology and morphology.

5.2.1 Topologies and morphologies

Since we are looking at the design of a non-anthropomorphic wearable robot, we start by

defining attachment points on the human body to which the parallel structure of the robot

can be attached. Since we are aiming to actuate the human hip and knee joints, we define

three attachment locations as shown in figure 5.3: One on the torso, one on the upper leg, and

one on the lower leg.

1

2

3

Figure 5.3 – Schematic representation of the attachment joints at which the wearable robot
can be attached to the human body.

We can look at the definition of the structure of the wearable robot in terms of its topology and

its morphology. The topology of a structure determines the number of degrees of freedom and

the manner in which they are connected. It therefore uniquely identifies the connectivity of

all the joints and segments in the system and can be represented by a graph. The concrete

realization of a certain topology into a structure results in a morphology. This realization

involves choosing the geometrical properties of the joints and segments, such as the length

of each segment and the placement of actuated joints. Figure 5.4 illustrates this principle

155



Chapter 5. Co-design of human assistive devices

schematically.
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Figure 5.4 – Schematic representation the realization of a specific morphology (right) from
a kinematic topology (left). On the right, the topology is represented as a graph where edges
represent joints and vertices represent segments. One possible realization of the topology is
shown on the right. Joints in orange are the loop closure joints.

In Sergi et al. (2011), a method is developed for the exhaustive enumeration of wearable robot

topologies for a given number of wearable robot segments, joints and a desired number of

degrees of freedom. Topologies can be represented by an adjacency matrix which encodes the

connectivity of the segments in the structure. Considering the fixed kinematic structure of the

human (i.e. the connectivity of torso, hip, knee and ankle), the wearable robot attachments

and the number of additional wearable robot segments and joints, all possible adjacency

matrices can be enumerated, resulting in a desired mobility. The mobility of a system with

parallel structures is defined as the resultant number of DOFs in the system, and is defined for

planar structures by (Kutzbach, 1929):

k = 3(l −1)−2n, (5.1)

where l is the number of segments and n is the number of joints in the structure.

In our case, it is useful to separate the mobility into human, attachment and wearable robot:

k = 3(l −1)−2n (5.2)

= 3(lh + lwr −1)−2(nh +na +nwr), (5.3)

where lh is the number of human segments (i.e. 3), lwr is the number of wearable robot
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segments, nh is the number of human joints (i.e. 2), na the number of attachment joints (i.e.

3) and finally nwr the number of wearable robot joints. Considering a mobility of k = 2, we can

then express this equation in terms of lwr and nwr:

6 = 3lwr −2nwr (5.4)

Given this equation, the minimally interesting set of topologies where k = 2 is given when

lwr = 4 and nwr = 3, which is the set that we will consider here. The method as described in

Sergi et al. (2011) first generates all of the possible combinations of connectivity adjacency

matrices. Then, it prunes this set by removing solutions which are over-constrained, contain

disconnected graphs or impair independent movement of the hip and knee joints. Finally,

10 different topologies each having the desired properties can be derived. Figure 5.5 shows a

choice of morphological representations for each of these topologies.

Even though we restrict ourselves in this study to these ten topologies, there are still many

different morphologies which can be realized. The lengths of the wearable robot segments as

well as the exact placement of the attachment locations determines the final structure of the

wearable robot and can significantly alter the behavior of the structure.

5.2.2 Actuator placement

Apart from the choice of segment lengths and attachment placement for the wearable robot,

there is another morphological choice that needs to be made. From figure 5.5 it can be seen

that there are now 6 joints (3 attachments and 3 wearable robot) where potential actuators can

be placed. Since we only have two degrees of freedom in this system, we should only need to

actuate two of these 6 joints. We can however not actuate just any two of these 6, since not all

combinations of two joints result in full control of the system. This is obvious when looking at

the first topology, where we will need at least one actuator on the top chain (for the hip), and

one on the bottom (for the knee). However, this is much less intuitive for the other topologies.

The possible actuator combinations for a given topology can be determined systematically, in

particular since we only have a small number of joints. First, iterate all possible combinations

of two actuator placements, i.e.:

{(i , j ), i ∈ [1,n], j ∈ [i +1,n]}, (5.5)

where n = 6 in our case. Then, for each actuator pair (i , j ) we perform a degeneracy test on

the topology such that if we collapse the two segments which a joint connects onto a single

segment, we lose exactly one degree of freedom in the system. If this is the case for both i and

j , then it follows that the pair (i , j ) fully determines all of the degrees of freedom the system.

Figure 5.6 illustrates this procedure schematically for the verifying of the actuator pairs (1,4)

and (1,6) for topology 2. For both, first joint 1 is collapsed, resulting in k = 1, i.e. the loss of

157



Chapter 5. Co-design of human assistive devices

1

1

2

3

4

5

6

2

1

2

3

4

5

6

3

1

2

3

4

5

6

4

1

2

3

45

6

5

1

2

3

6 4

5

6

1

2

3
4

6

5

7

1

2

3
4

6

5

8

1

2

3

4

5

6

9

1

2

3

5

4

6

10

1

2

3

4

5

6

Figure 5.5 – Morphological representations of enumerated topologies having 3 wearable robot
joints and 4 wearable robot segments. Only a single realization for each topology is shown,
and it should be noted that different realizations of the same topology can lead to wearable
robots with significantly different properties. Joints in green (1, 4, 5 and 6 in the top row, and 3,
4, 5 and 6 in the bottom row) are the added attachment and wearable robot joints, while the
orange joints (2 and 3 in the top row, 1 and 2 in the bottom row) are the added loop closure
joints.

one degree. Next, for the first pair joint 4 is collapsed, however the degrees of freedom in the

system is still k = 1. The pair (1,4) is therefore not a valid actuator pair. On the other hand,

when collapsing joint 6 after joint 1 the result degrees of freedom are k = 0, and (1,6) thus fully

determines the system. Note that the maximum number of combinations of choosing joint

pairs of size k from a total of n joints is given by:

N = n!

2 · (n −k)!
(5.6)

(with (i , j ) = ( j , i ) and j 6= i ), which means that in our case with k = 2 and n = 6, the maximum

possible actuator pairs is N = 15. Table 5.1 lists the resulting actuator pairs for each topology.

In terms of structural parameter spaces, as defined when using MMPSO (see section 3.2), we
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Figure 5.6 – Schematic illustration of the determination of valid actuator pairs in given a
topology. In this case, the pairs (1,4) and (1,6) are checked for topology 2. We start on the left
with the full topology and then collapse joint 1 to obtain the second topology and check for
the mobility of the topology using equation 5.1. If the mobility has reduced by a single degree
when collapsing a joint, then that joint can be a valid actuator. Next we check for the second
actuator in each pair. When collapsing joint 4 (top right), we obtain k = 1 and thus DOFs are
not reduced and the pair is invalid. On the other hand, collapsing joint 6 (bottom right) results
in k = 0 and thus (1,6) is a valid actuator pair.

now have 10 parameter spaces for the morphological parameters needed to realize the 10

topologies (i.e. wearable robot segments and attachment offsets). In addition, within each

of these 10 spaces, we have a further N parameter spaces for each of the actuator pairs. We

therefore have a total of 126 parameter configuration spaces to explore using MMPSO. Section

5.4.1 provides more details on using MMPSO for this particular optimization.

5.2.3 Singularities

Although the general, or maximum mobility of a closed loop kinematic chain can be deter-

mined using equation 5.1, the actual mobility of a parallel system is usually variable. The

cause of this variability is the occurrence of kinematic singularities, in which case the mobility

of the structure is temporarily reduced. When considering parallel structures such as shown
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Table 5.1 – Actuator pairs for each topology

Topology N Actuator pairs

1 9 (1,5), (1,3), (1,6), (2,5), (2,3), (2,6), (5,4), (3,4), (4,6)
2 12 (1,5), (1,3), (1,6), (5,2), (5,3), (5,4), (5,6), (2,3), (2,6),

(3,4), (3,6), (4,6)
3 12 (1,2), (1,3), (1,5), (1,4), (1,6), (2,3), (2,4), (3,5), (3,4),

(3,6), (5,4), (4,6)
4 12 (1,3), (1,5), (1,6), (2,3), (2,5), (2,6), (3,4), (3,5), (3,6),

(4,5), (4,6), (5,6)
5 15 (1,2), (1,3), (1,6), (1,4), (1,5), (2,3), (2,6), (2,4), (2,5),

(3,6), (3,4), (3,5), (6,4), (6,5), (4,5)
6 12 (1,2), (1,3), (1,5), (1,6), (1,4), (2,5), (2,4), (3,5), (3,4),

(5,6), (5,4), (6,4)
7 15 (1,2), (1,3), (1,6), (1,5), (1,4), (2,3), (2,6), (2,5), (2,4),

(3,6), (3,5), (3,4), (6,5), (6,4), (5,4)
8 12 (1,3), (1,5), (1,6), (2,3), (2,5), (2,6), (3,4), (3,5), (3,6),

(4,5), (4,6), (5,6)
9 12 (1,2), (1,3), (1,5), (1,6), (1,4), (2,5), (2,4), (3,5), (3,4),

(5,6), (5,4), (6,4)
10 15 (1,2), (1,3), (1,4), (1,5), (1,6), (2,3), (2,4), (2,5), (2,6),

(3,4), (3,5), (3,6), (4,5), (4,6), (5,6)

in figure 5.5, kinematic singularities can easily occur. Figure 5.7 shows a simple case of such a

singularity where in a particular configuration, a joint which could previously actuate the sys-

tem can now no longer do so. The case shown in figure 5.7 is intuitive, but as with determining

pairs of actuators, it is not necessarily so in the general case.

It is possible to exploit these singular configurations during locomotion since joints can

effectively be locked. This can be beneficial during the stance phase since no torques are

required to keep the leg straight. In earlier work, we would allow singular configurations to

occur and we would indeed observe that most optimizations resulted in the use of singularities

during the stance phase.

The problem is though that once in a singular configuration, we cannot move out of it by

controlling the joint anymore. This problem does not occur during simulation as such because

we optimize for steady state locomotion and we do not explicitly require the system to be

controllable everywhere as long as it moves forward. Therefore, as long as the structure is no

longer singular when we need to actually control it (e.g. end of stance), gaits are unaffected.

Of course, on a real device the type of singularities that would occur with our wearable robot

are highly undesirable. Unless additional mechanisms are present to discontinue the singular

configuration at any time, the system becomes uncontrollable during certain phases of the

gait and it is no longer possible to obtain anything other than the precise gait we optimized

for.
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3

5

6

Figure 5.7 – Occurrence of a simple kinematic singularity. It is intuitive in this case that applying
a torque on joint 6 would result in only linear forces acting on the knee joint, and not in any
torque. Therefore, no amount of torque applied to joint 6 will result in any movement of the
knee, hence the singularity. Note that a singularity is not a property of the kinematic chain
only, it depends on where torque is being applied in the chain. In this case, the knee joint itself
(for example) can still be actuated without problems.

Until now, we have only mentioned singularities in the context of the wearable robot. However,

singularities can also occur on the human joints, i.e. leaving the person locked in the wearable

robot structure. Again, this is undesirable since not only does this lead to possible discomfort

for the person, but he or she should always be capable of control.

In our simulations we therefore explicitly validate morphologies in terms of possible singu-

larities before simulating them. Since we are interested in steady state locomotion, we look

at singularities occurring during nominal walking gait trajectories. Furthermore, we verify

that neither the actuated joints on the wearable robot, nor the human hip and knee joints

become singular during any phase of the gait. Determining the singularity of a configuration

is detailed in section 5.4.4.

5.2.4 Summary

In summary, the goal of this work is the co-design of a wearable robot designed for lower

limb locomotion of an average, adult size human person. We focus specifically on steady

state locomotion in the sagittal plane by attaching a parallel structure to the hip and knee of

a human model, while leaving the ankle actuated directly. The morphological space of the

wearable robot consists of the realization of 10 different topologies featuring two degrees

of freedom per leg, composed of 4 additional segments and 6 additional joints. These two

degrees of freedom are both actuated using wearable robot joints and the choice of actuator

pair is open for optimization, while the remaining wearable robot joints are modeled as spring

dampers (of which spring stiffness and damping are also optimized). Finally, we explicitly

verify that a wearable robot does not contain kinematic singularities during nominal gait
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before simulating it, for both the actuated wearable robot joints as well as the human hip and

knee joints.

5.3 Modeling

There are three main difficulties when it comes to the modeling of wearable robot structures

for locomotion as we would like to do here. The first is the modeling of closed loop dynamics,

for which the resulting equations of motion are significantly harder to derive than for the

general open loop system. Moreover, we also need a convenient representation of the model

in which we can easily parametrize not only the control, but the morphology as well, without

loss of performance. The second issue is that of simulating contacts with the environment.

Although this is a general issue when modeling for locomotion simulations, it is even more

so when considering hard contacts with closed loop dynamics. Finally, since we would like

these simulations to provide input to the design process of an actual wearable robot, we need

simulations to be accurate (rather than very fast) and have access to quantities such as joint

constraint forces and model Jacobians (used to check for singularities).

Although it is certainly possible to perform the type of simulations that we require using

various simulator tools, cȯdγn (see chapter 2) is particularly well suited for the task. Not only

does it provide a hard contact model which solves for the dynamics regardless of closed loops

present in the system, it also allows for both easy parametrization of the morphology and high

performance simulations. We therefore use cȯdγn for all of the simulations in this chapter. We

briefly describe in the next section the modeling of the human augmented with the wearable

robot and continue after that with the method used to verify the singularity of the system.

5.3.1 Augmented human model

The modeling of the human is done in exactly the same way as shown in the previous chapter

(section 4.1.1), except that we no longer use the soft contact model. The dimensions and

inertial properties are kept the same, i.e. resembling an adult sized human of approximately

70kg and a height of 1.80m.

Since we limit ourselves to 10 topologies, we can construct the closed loop rigid body dynamics

for each of these topologies separately. By choosing the proper parametrization, we can then

still use cȯdγn to generate high performance code to forward simulate the system. Recall from

chapter 2 that cȯdγn does not allow dynamic alteration of the structure of the dynamics. It is

therefore less suited if we would like to also optimize for open topologies (e.g. using genetic

programming), since we would need to reconstruct the dynamics for each simulation. Here

instead, we can parametrize each morphology (corresponding to one of the 10 topologies)

such that we can still change mass, center of mass, inertia, segment length and attachment

positioning while avoiding the need to regenerate the model for each simulation.
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Having defined the human model, we then proceed to first place the three attachment joints

on the torso, upper leg and lower leg of the human. Then we continue to introduce the four

additional wearable robot joints and connect them according to the respective topology.

5.3.2 Closing joint actuation

In section 2.6.9 of chapter 2 the procedure for deriving the closed loop equations of motion

was shown. This derivation only considered the kinematic constraint imposed by the loop

closure joint, and omitted how to model the application of active joint torques on the loop

closure joint. However, since we are able to place actuators on loop closure joints, we require

additional dynamics integrating active loop closure forces.

The easiest way to introduce these forces, from Featherstone (2008), is to model the loop

closure joint forces as external forces projected to the bodies connected by the joint. Instead

of calculating τa explicitly, we can instead calculate C −τa directly by modifying the Recursive

Newton Euler algorithm as shown in section 2.6.6. This is automatically done in cȯdγn as soon

as there are loop closure joints.

5.3.3 Constraint forces in closed loop systems

Since we derive equations of motion in generalized coordinates, we no longer have access to

the constraint forces from the equations of motion. This is not important when concerned

only with motion, but becomes important when using simulations for design. In particular,

we are interested here in being able to measure constraint forces (i.e. internal forces) on the

human joints and segments.

Using the Recursive Newton Euler algorithm, constraint forces can actually be obtained from

a by-product of the derivation of C , and thus requires no further calculations (see equation

2.53). This however is no longer sufficient when considering closed loop systems. Recall that

loop closures are resolved in the equations of motion by introducing acceleration constraints:

K q̈ = k (5.7)

and generalized constraint forces:

τc = K Tλ, (5.8)

where λ are the loop closure constraint forces as observed from the child frame of the loop

closure joint. Note further that although λ is solved for, it is merely projected directly to

generalized forces τc and thus information about constraint forces is again lost. To resolve this,

we can projectλ through the constraint force subspace of the loop closure joint to obtain the

spatial constraint force at the joint and propagate it through the system as an external force.

We only do so to compute the resulting constraint forces, i.e. compute them separately from
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the equations of motion. Incidentally, since the hard contact model in cȯdγn is implemented

using loop closure constraints, this method also works without changes for obtaining joint

constraint forces when using hard contact models.

5.3.4 Control

For the control of the wearable robot joints we use the same impedance controller developed

in the previous chapter. There we observed that the step control mode, i.e. where stiffness and

damping are varied by a step function, generally outperforms a constant stiffness/damping

impedance controller, as well as a more complex stiffness/damping controller (the ppoly con-

troller). It therefore seems that it provides a good trade-off between parameter complexity and

variable impedance control during optimization. Furthermore, using impedance control we

obtained natural gait from high-level objectives only. We will therefore use the step controller

in this work to control the wearable robot:

τi (t ) = Ki (t )(qri (t )−q(t ))−Di (t )q̇(t ) (5.9)

Ki (t ) =




K 1
i , Kt1 < t < Kt2

K 2
i otherwise

(5.10)

Di (t ) =




D1
i , D t1 < t < D t2

D2
i otherwise

, (5.11)

with τi (t ) the output torque, qr (t ) the joint angle reference trajectory, Ki (t ) the phase depen-

dent stiffness and Di (t) the phase dependent damping. It should be noted that here we did

not explore the use of other possibly interesting control methods. We also do not explicitly

investigate the role of variable impedance for actuation of the wearable robot. Our main focus

is on the development of the methodology and we build on evidence from our previous results

towards variable impedance control being suitable for human locomotion optimization.

The joint angle trajectories of the wearable robot joints can be more complex, or variable, due

to the non-linearity of the joint angle transfer function of the parallel structure. We therefore

increase the number of points for the piecewise polynomial function for qr (t ) to 5 (instead of

4 previously).

Apart from the actuated wearable robot joints, the ankle joint is also actuated using the same

type of step controller. The remaining wearable robot joints are furthermore controlled using

a simple spring/damper controller:

τi = Ki (qri −q)−Dq̇ , (5.12)

of which the stiffness Ki , rest angle qri (constant) and damping Di are open for optimization.
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5.4 Optimization

The optimization procedure for the co-design of the morphology of the wearable robot and its

control deserves some special consideration. On the one hand we do not only optimize for a

fixed set of numerical parameters, but are required to optimize for structurally different sets of

parameters (i.e. for the different topologies and actuator positioning). On the other hand, we

know beforehand which types of solutions we would like to explore, and those solutions can

be easily enumerated (i.e. 10 topologies with actuator pairs varying from 9 to 15). It is therefore

neither completely fixed, nor completely open-ended.

5.4.1 Algorithm

The Metamorphic Particle Swarm Optimization algorithm developed in chapter 3 is partic-

ularly well suited for this type of optimization, and in fact was specifically designed for it. It

allows for guided exploration of a fixed number of known parameter spaces, using cooperation

principles to transfer particles between parameter spaces akin to the original Particle Swarm

Optimization method.

In the parlance of MMPSO, the wearable robot co-design optimization has a single parameter

pool containing 126 parameter groups. Each group is mutually exclusive within the pool, so

only a single topology and actuator pair can be active at the same time. A second parameter

pool with a single parameter group is used to contain all of the common parameters to be

optimized (such as for the ankle joint actuation and wearable robot segment lengths). Each of

the 126 parameter groups corresponding to a particular topology and actuator pair contains

the parameters for the active joints in that group.

5.4.2 Parameterization

There are different ways in which we can parametrize the wearable robot morphology and

control. For the control we choose the same parametrization as we have used in the previous

chapter, i.e. a differential encoding of the trajectory signals. For the morphology we can

choose between two different encodings. The first encodes for each set of connected links the

angle between the links, and for each individual link, its length. The second approach simply

encodes, for each joint, its position in Cartesian space, from which the segment lengths can

then be derived by means of looking at the connectivity of joints according to the topology.

Both encodes require the same number of parameters (e.g. 4 parameters for topology 1 and 6

parameters for topology 5).

An important difference between the two encodings is the manner in which a change in a

parameter results in a change in the morphology. Using the first encoding, a change in a single

parameter, for example a joint angle, causes a rotation of a (sub)structure of the morphology.

On the other hand, using the second encoding, a single parameter change simply results in
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Table 5.2 – List of open parameters

Parameter Boundaries Description

Morphological parameters

Body joint
x (−0.15, 0.15) m The Cartesian x-position of the joint
z (0.1, 1.3) m The relative z-position of the joint on

the segment at which it is placed

WR joint
zrel (0, 1) The Cartesian z-position of the joint

Control parameters

Active joint
qx1...x6 (0, 1) Differential x points for reference po-

sition signal q
qy1...y5 (−π, π) rad y data points for reference position sig-

nal q
Kx1,x2 (0, 1) Differential encoding of stiffness step

transition
Ky1,y2 (0, 12000) Nmrad−1 Active impedance stiffness
Dx1,x2 (0, 1) Differential encoding of damping step

transition
D y1,y2 (0, 60) Nmsrad−1 Active impedance damping

a global Cartesian displacement. It is not entirely intuitive to say beforehand which type of

encoding is better than the other. Here we chose to use Cartesian placement of joints since

parameters encoding for morphology are more decoupled in a sense. The Cartesian placement

is done on the human model in the upright position, and is therefore equal for the right and

left leg.

For joints which are attached to the human body, we use a relative displacement encoding,

i.e. a value from 0 to 1, encoding where on the corresponding segment between the parent

and child joint the attachment is placed. For the wearable robot joints which are not directly

attached to the body, we use a global Cartesian x and z encoding, allowing joints to be placed

in a bounding rectangle around the human body.

Table 5.2 lists all the open parameters optimized in this work.
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Mass distribution

The mass distribution of the wearable robot is automatically derived from its morphological

configuration and the placement of actuators. We use reasonable estimates for the inertial

properties of the actuators, passive spring/dampers and wearable robot segments, but at this

time do not model these components precisely based on available physical devices.

Each actuator in the system is modeled as an object with a mass of 2kg and a cylindrical

moment of inertia around the axis of rotation for a cylinder with a radius of 5cm. Similarly,

the passive joints are modeled using a weight of 0.5kg and also have a cylindrical moment

of inertia. The wearable robot segments are approximately modeled after cross-sectioned

aluminium bars with a thickness of 1cm and a width of 3.5cm, resulting in a density of ≈
0.7kgm−1 segment length. After wearable robot joints are placed, resultant mass m, center of

mass CoM and inertia I for each body is determined by composition of the individual inertial

properties belonging to the same joint. Triangular segments (featured in topologies 4 to 10)

are modeled using three segment bars.

5.4.3 Objectives

Since MMPSO can run any type of optimization algorithm in the inner layer, we can readily

use particle swarm optimization with lexicographic ordering in the inner layer. We use the

same structure for the lexicographic objectives as used in the previous chapter, with a few

modifications. Two new objectives are added to the previously used objectives. The first is

an explicit check on segment size. Since the parametrization does not explicitly encode for

segment length, the resulting segments can become very long in certain cases. We therefore

introduce an objective which verifies if segments are not longer than a certain size. This

maximum size is set to 0.7m in this work, based on approximate maximum length at which

the segments would start to buckle according to their modeled material. The second new

objective is one verifying that the kinematic configuration does not become singular, and is

explained in greater detail in the next section.

When we initially ran simulations, we noticed that it was difficult to optimize for speed and

assist time in sequence. An improvement in assist time would directly have a negative impact

on the speed, thus oscillating between the two objectives. This is one of the possible disad-

vantages of lexicographic ordering of objectives. To resolve this issue we instead combine

the two objectives into a single lexicographic objective by using a multiplicative aggregation

function. Note that the design of an objective function is still an empirically guided effort,

which often requires several iterations of tuning before desired results can be obtained. Since

we found it significantly more difficult to obtain gaits which were self-stabilizing, we also

allow a maximum assist time of 10% during the gait. Finally, we use power (i.e. torque times

angular velocity) instead of simply torque. We do so because due to the non-linear nature of

the transfer function relating the joint velocities of the wearable robot and the human joints,

we no longer assume that torque is a reasonable estimate of energy. If we were to use torque
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instead, we would bias towards possibly fast moving wearable robot joints requiring relatively

small torques. The final objectives are listed in table 5.3.

Table 5.3 – Lexicographic Objectives

Objective Until

1. time time = max time
2. segment size segment size ≤ max segment size
3. singularity singularity = 0
4. speed match · no assist time speed match ≥ 0.95 & assist time ≤ 0.1
5. -power ∞

5.4.4 Singularities

There are two types of singularities that we want to avoid during the co-design simulations.

The first type is caused by not being able to reach a certain hip/knee joint angle combination

due to the wearable parallel structure not allowing to reach that far. This effectively creates

unidirectional singular configurations, and often happens for example in serial manipulators

when trying to reach for a target Cartesian position which is out of reach. In our case this

would mean that some hip/knee angles could not be reached during nominal gait, which is

undesirable. The second type of singularity is the one discussed earlier, where there is a loss of

mobility. In these cases it is no longer possible to control the system. Additionally, we require

that the human is always able to control the system, and thus the hip and knee joints should

also never become singular.

The aim of the singularity verification procedure is to quickly discard solutions which are not

interesting, without the need to simulate them extensively. We begin by obtaining the nominal

joint angle trajectories during normal walking from Winter (2009). We then discretize these

trajectories such that we obtain N pairs of (hip, knee) joint angles. We then verify both types

of singularities for each pair of (hip, knee) angles, given the wearable robot as given by the

parameters of the solution to be evaluated. Furthermore, we also evaluate singularities for

±∆◦ offsets at each point to make sure there are no singularities in the neighborhood of the

nominal gait cycle.

The determination of the first type of singularity is closely related to the problem of inverse

kinematics. Given (hip, knee) joint angles, we want to determine the dependent joint angles

of the wearable robot (since we only have two degrees of freedom), given the loop closure

constraints. If the conditions for the determination of these dependent joint angles are ill,

then the configuration has become singular. There are various ways in which to solve for

the dependent joint angles. If a closed form solution of the system is known (i.e. a function

mapping independent joint angles to dependent joint angles), then such conditions can be

readily obtained from the closed form equations (i.e. in the case of singularities there will be

no solution). However, as mentioned in chapter 2 when discussing closed loop systems, it is
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hard to derive closed form solutions in general, and it is not the approach we are taking.

If a closed form solution is not available, an iterative approach can be used instead. A funda-

mental quantity that enables this is the Jacobian. Recall from section 2.6.8 that the Jacobian

can be used to map joint velocities to Cartesian velocities, i.e.:

ẋ = J q̇ (5.13)

Therefore, given a (small) error ∆x in location of an attachment point on the human body,

and the end-effector of the closing loop joint (i.e. the loop closure error), we can obtain joint

velocities that would reduce this error by inverting this equation:

q̇ = J−1∆x (5.14)

Of course, J is linearized, and thus the relationship between q̇ and ẋ is only approximated

linearly. Therefore, care has to be taken when the error ∆x is large. This is usually solved by

performing equation 5.14 iteratively, reducing ∆x over a number of steps. Furthermore, J is

not always invertible in which case the pseudo inverse J+ can be used instead.

Since cȯdγn readily provides the required Jacobians, we can easily perform this iterative Jaco-

bian approach for solving the inverse kinematics. To detect singularities, we simply observe∆x

and if we are unable to reduce it until some (small) threshold, we decide that the configuration

is singular. The same procedure is also used to determine the initial conditions of the wearable

robot given some initial condition for the human joints, i.e. initialized inside the gait.

If a singularity is not reached when closing the loop closure joints on the desired (hip, knee)

configuration we can proceed with verifying the second type of singularity. Again, the Jacobian

comes to our rescue. The principal idea is that we need to verify if applying a velocity to an

actuated joint would result in a non-zero velocity on desired joints (in our case those of the

human), while not violating the kinematic constraints imposed by the loop closure joints. To

do so we first construct the loop closure Jacobians:

ẋc = Jc q̇ , (5.15)

for each loop closure joint c, mapping joint velocities q̇ to a Cartesian velocity ẋc in the

coordinate frame of joint c. We then create an extended Jacobian by stacking the individual

Jacobians:

J =




J1
...

JN


 (5.16)

Finally, we can create a mapping from one joint velocity to another under the kinematic

constraint from the loop closure joints by taking the null space projection of the Jacobian, i.e.

169



Chapter 5. Co-design of human assistive devices

a matrixN such that:

JNq̇ = 0 (5.17)

In other words,Nmaps joint velocities such that they do not affect the loop closure constraints,

andN is obtained by:

N= I − J+J (5.18)

Having obtainedN, the occurrence of singularities can be easily verified. Given a actuated joint

i and an observable joint j , we can simply verify whetherN(i , j ) is non-zero. If so, it means that

a velocity in i results in a velocity in j (and vice versa) by effect of the loop closure constraint.

IfN(i , j ) is close to zero, we decide that the configuration is singular in i with respect to j . We

then verify this for 1) the actuated wearable robot joints towards the hip and knee joints, and

2) the hip and knee joints towards themselves. The second check ensures that the human is

always able to control the motion of the robot.

There is one snag related to determining the singularity of the loop closure joints themselves.

Since they are not represented by a generalized coordinate, we can not use N to determine

the influence of a velocity on a loop closure joint to other joints in the system. There are

two ways in which this can be solved. The first is to create new systems in which a different

joint becomes the loop closure joint, leaving us free to use theN of that system to determine

singularity of the original closure joint. This however requires the definition of multiple models

for each topology which is rather inconvenient. The other solution, which is the one we use

here, is to use the loop closure velocity Jacobian. Recall that the loop joint spatial velocity is

defined by:

v c
J = (Ji − J j )q̇ , (5.19)

where Ji and J j are respectively the Jacobians of the parent and child bodies of the loop closure

joint. Thus, given a mapping of loop closure joint generalized velocity q̇c to its spatial velocity

v c
J (given by the motion subspace of the loop closure joint), we can use the inverse of the loop

closure velocity Jacobian to obtain how the spatial velocity v c
J affects the generalized velocities

of the system q̇ :

q̇ = (Ji − J j )+Sc q̇c , (5.20)

with Sc the motion subspace of loop closure joint c. We can then simply check whether a

velocity in an actuated loop closure joint affects the hip and/or knee joint, thus verifying

whether or not the loop closure joint is singular. The overall procedure for verifying that a

given configuration is not singular for a range of (hip, knee) joint angles is then as follows:

1. Use the loop closure joint end-effector Jacobian (pseudo)inverse to iteratively solve for
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initial conditions of the (hip, knee) joint angle pair

2. If the loop closure can not be closed in some iterations, decide the configuration is

singular

3. Compute the null space N of the extended Jacobian containing all loop closure joint

Jacobians

4. Determine if the knee or the hip joint is singular towards itself, if so the configuration is

singular

5. For actuated wearable robot joints determine whether they are singular towards the

knee and hip joints by using N in case of non loop closure joints and equation 5.20

otherwise. If singular in either hip or knee, then the configuration is determined singular

This verification is performed each time before simulation starts, and solution which are

singular are discarded directly without further simulation.

5.5 Results

We run the MMPSO optimization with 200 particles, since there are many possible configu-

rations to explore. Furthermore, we run it for 800 iterations thus allowing time to properly

explore configurations as necessary, before converging on a single configuration and finishing

the optimization. The probabilities Pe , Pl and Pg were chosen as shown in figure 5.8. The

probabilities are chosen empirically, however not arbitrarily. Since we explore a large space, we

allow ample time for parameter subspaces to be explored through the exploration probability

pe . We then allow, through Pl , more intense exploration of particles’ local best known con-

figuration subspaces. Finally, Pg becomes active around iteration 500 and ensures particles

converge on a single global best known parameter subspace and spend the last 200 iterations

fully exploring the solutions found there.

Table 5.4 – Top 3 obtained power solutions

Topo Mass CoM (z) Segment size Power Torque Assist time

2 83.3 (+13.3) 1.07 (-0.03) 0.3–0.46 462 1141 0
5 83.9 (+13.9) 1.02 (-0.08) 0.2–0.52 748 418 0.01
3 83.5 (+13.5) 1.03 (-0.07) 0.1–0.64 1018 818 0

Table 5.4 lists various quantities of the 3 best obtained solutions in terms of power. As can be

seen, optimizing for power leads to different optima as when optimizing for torque, since the

second ranked solution for power would rank first when comparing only torque.

Furthermore, what is interesting to notice is that although each solution has optimized for a

different topology, the added mass (≈ 13.5kg) as well as the total center of mass of the system

is approximately the same. Note that a fixed amount of mass of 11kg is already added in all

configurations due to the 4 actuators (each 2kg) and 6 passive revolute joints (each 0.5kg). The
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Figure 5.8 – Probability curves determining the rate at which particles are mutated to a different
parameter subspace. The curves are designed such that there is early exploration and late
convergence towards a global optimum. Since the optimization problem is complex, particles
mutate on average only every 20 iterations, as determined by Pe in the beginning. From
iteration 500, particles start to transfer to the globally best known parameter subspace by Pg .

center of mass, when compared to the non-augmented human model, is moved only slightly

downwards, a maximum of 10cm. What is particularly interesting though is that the center

of mass has only changed in the z (up/down axis) direction. The wearable robot is otherwise

perfectly balanced in terms of mass between the front and back sides, which was not explicitly

optimized for. This can be explained by the fact that balancing the system as such improves

stabilization of the system with minimum power requirements.
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Figure 5.9 – Morphology of the 3 best obtained results. From left to right, topology 2, topology
5 and topology 3. Note that the wearable robot segments are offset in this schematic view from
their original position, for clarity.
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5.5. Results

There are some further interesting observations to be made from the obtained solutions. In

the first, the wearable robot joints 2 and 3 are placed very closely to the knee, and the joints

1 and 5 are placed relatively close to the hip. As such, the obtained morphology resembles

that of an anthropomorphic structure, in terms of transfer of forces. Interestingly however,

actuators are both placed relatively closely to the hip, thus concentrating most of the wearable

robot mass at the level of the hip.

The second morphology features a complex linkage system which operates in an accordion

like manner, expanding during swing phase and contracting closer to the body in the stance

phase. Interestingly, the wearable robot joint 1 and joint 3 perform actuation of the system,

while the relatively complex linkage system composed of joints 2, 4, 5 and 6 provides transfer of

the appropriate movement to the human joints. The gait of this second solution is somewhat

less natural. It makes fairly large steps, which is likely the cause of it performing worse (in

terms of power) than the first solution. The last morphology is in a way quite similar to the

second morphology, since again joints 1 and 3 actuate the system while the internal linkage

system between the upper leg and the lower leg is completely passive. However the resulting

gait is optimized as to keep the knee straight at all times, leading to a relatively unnatural gait.

Figures B.3 and B.4 in appendix B show snapshots of the gaits of the first two solutions.

Next we can look at the behavior of the MMPSO optimization algorithm. In particular, we

are interested in how well MMPSO has explored the parameter configuration spaces. Figure

5.10 shows a visiting frequency plot for the first two best obtained solutions (the third shows

the same characteristics). We can immediately see that most of the parameter subspaces

are visited, except for 4 spaces which are never visited. On average, ≈ 700 evaluations are

performed in each subspace, while the optimal subspace has seen ≈ 61700 evaluations (note

that the scale in the figure is a log2 scale). This large difference is due to the global exploitation

probability Pg which we designed such that the last 200 iterations were mostly spend in a

single subspace.

Not all parameter subspaces are explored equally, which is due to the stochastic nature of

our optimization algorithm. It is therefore always important to run an optimization several

times with different initial conditions. Additionally, the algorithm does not guarantee visiting

all subspaces, as can be seen in figure 5.10. This is also not the purpose of MMPSO, since in

that case it would be more appropriate to simply do a systematic search. Instead, MMPSO

is designed such that it rapidly explores multiple possible spaces, while making informed

decisions on which of those spaces are most interesting to explore further.

Videos of the resulting wearable robot solutions can be found at http://thesis.codyn.net/

videos/codesign/last.
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Figure 5.10 – Number of evaluations in each parameter subspace. Each topology (on the x axis)
corresponds to the topologies shown in figure 5.5, while each actuator pair corresponds to the
pairs listed in 5.1. Cells indicated with 0 are invalid configuration spaces (i.e. topology 1 has
only 9 possible actuator pairs). Furthermore, cells indicated with x are not visited at all while
the cell marked with † indicates the topology and actuator pair of the optimal solution found
in that particular run.

5.6 Discussion

In this chapter we used all methods previously developed: 1) closed loop rigid body dynamics

and efficient model parametrization from chapter 2; 2) simultaneous optimization of known

sets of parameter configuration spaces and their continuous parameters, as well as large

scale population based optimization from chapter 3; and 3) the impedance control and

lexicographic ordering method for multiobjective optimization from chapter 4. We show how

all these combined can be used to derive a methodology for the co-design of the structure

and control of a wearable, lower extremities robot to effectively explore the design of a non-

anthropomorphic augmenting structure for human locomotion assistance.

The open-ended exploration of the morphology and control of such a device leads to a complex

optimization problem with many possible parameter configuration spaces and, within each,

a large space of continuous parameters to be optimized. Nevertheless, we show that our
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methodology is able to explore this design space and obtain wearable robot morphologies with

varying dynamical properties. In particular, it is interesting to note how the mass distribution

of the structure is optimized such as to have a minimal impact on the center of mass of the

total system when compared to a human model, without having specified the need for it

explicitly. Additionally, we see that all obtained solutions favor placing at least one actuator

attached to the torso (just above the hip), which we presume to increase stability. The non-

anthropomorphic structure is able to transfer motion to the hip and knee joints through a

series of parallel structures which would not be possible using a conventional design.

In the results shown here, we do not obtain a more energy efficient design of a wearable robot

than the anthropomorphic case. The obtained solutions all require more power than if we

would simulate an anthropomorphic wearable robot with the same material properties (i.e.

masses) as the ones used for the non-anthropomorphic wearable robot during our study. How-

ever we did not set out with this goal in mind. Instead, we show that our methodology enables

the effective exploration of a possible solution space leading to novel and not always intuitive

solutions. Our methodology furthermore allows one to easily optimize only parts of the re-

sulting system when a certain interesting dynamical property of a structure is found, leading

to an iterative co-design method. For example: 1) the morphology could be fixed, focusing

optimization efforts on (possibly more complex) controllers only; 2) only actuator placement

could be explored in a single topology; or 3) only a subchain of the non-anthropomorphic

structure could be left open for further optimization.

In many ways, the results shown in this study only touch upon the subject of the co-design of

a device as we propose. It should be noted that we do not aim to provide a finalized design.

Rather we propose that our methodology is a viable solution for exploration of possible non-

conventional designs. The methodology is general enough to also allow for the exploration

of conventional (i.e. anthropomorphic) design, where it could be used to optimize for mass

distribution, minor actuator placement adjustments or other morphological design param-

eters. Although we show that this method obtains reasonable locomotion gaits supporting

the human body, exploring many possible morphologies and corresponding control of those,

there are still many directions left to explore further.

1. Interaction forces: We presented in this chapter a method to obtain the interaction

forces in closed loop systems (which is provided by cȯdγn currently), however we did

not optimize specifically for these forces. Although the nature of the optimization is

such that, implicitly, by optimizing for the power of the wearable robot, the interaction

forces should be minimized. In other words, the wearable robot is more efficient the

more power is transferred to the human joints, instead of ending up in constraint forces.

Nevertheless, there are no guarantees towards this end and it would be interesting to

add a lexicographic objective for a maximum allowed interaction force on the human

limbs.

2. Ankle support: In our present study we only investigate the actuation of the hip and knee

joints through the wearable robot, leaving the ankle conventionally actuated. However,
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a realization of such a device would at the very least need a way to transfer load from

the wearable robot to the ground, since the added mass from the device would add too

much load on the human body. It would therefore be necessary to either 1) design an

ankle device connected to the hip/knee device which transfers the load, or 2) co-design

the actuation of the ankle as well.

3. Passive elements: The non-actuated joints in our study are completely passive. It is

however well known that it is possible to store and release energy during certain phases

of the gait, enabling more energy efficient devices. It would be interesting to explore

the incorporation of such energy stores in the passive joints of the wearable robot

during the co-design optimization process (Donelan et al., 2008). Examples of possible

avenues are the exploration of rotational spring dampers, clutches allowing for the

temporary locking and unlocking of a structure (Herr, 2004) or the addition of linear

elastic elements (van den Bogert, 2003).

4. Human adaptation: Our study is only concerned with the full actuation of the wearable

robot, while the human inside is completely passive. This resembles more or less the

case of a paraplegic, but does not correctly represent other possible uses for such a

design. The adaptation of a human to a device can be taken into account while assisting

only a certain amount of the full locomotion gait, as opposed to providing all of the

necessary power (Ronsse et al., 2011a). Furthermore, the role of morphology and control

for various pathologies (physical limitations or unnatural motor control strategies) can

be explored by modeling such pathologies in simulation (Delp et al., 2007).

5. Generalization: Here we have only explored applying our methodology to a specific

case. Although the methodology itself is general (i.e. the algorithms and methods do

not assume domain specific information), the design of the objectives and choice of

parametrization is still specific to the chosen problem. In Pouya et al. (2010) we show

that the methodology can be applied to other domains, but this only gives emperical

evidence towards generalization. As is usual with optimization, the obtained results

are sensitive to the specific objectives that were optimized for. In our experiments

we specifically optimized only for steady state locomotion in the sagittal plane. It is

therefore not unreasonable to assume that the obtained morphologies and control are

specific to this task, and do not necessarily generalize to a design suitable for a larger

range of tasks. However, the method itself does not exclude the design of a process in

which the objectives include a multitude of tasks (for example including sitting, standing

up and walking stairs).
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6 Conclusion

We started out looking at the possibility of the co-design of a lower extremities, wearable robot

using evolutionary optimization strategies. After having performed various initial experiments

we realized two important things, 1) there is great potential for novel and unintuitive design

strategies arising from the co-design of morphology and control and 2) the simulation problem

is a complex one and requires a state of the art and, importantly, open simulation environment.

We thus took a step back, and started working on a framework which resulted in cȯdγn, a

state of the art modeling and simulation environment for the design of coupled dynamical

systems with a specific focus on coupled oscillators and rigid body dynamics. Driven by the

desire to create an open, free to use, fast and well documented framework, we created soft-

ware in which modeling coupled dynamical systems is both expressive and well performing.

Furthermore, unsatisfied with the currently available, state of the art RBD simulators suitable

for accurate simulations including precise, hard contact models and sophisticated closed

loop dynamics modeling, we provided a fully declarative implementation of RBD as described

by Featherstone (2008). The resulting models are easy to parametrize and can be quickly

translated, without loss of generality, to a low level implementation suitable for simulation

on Real Time, embedded and micro-controller systems. By making the framework available

under an open and free license at http://www.codyn.net, results obtained using cȯdγn can be

readily replicated and improved upon since models are easily shared. It therefore provides

a basis upon which scientific work can be rapidly advanced. cȯdγn is not suitable for all

types of dynamical systems. In particular, it only supports systems which can be modeled

with ordinary differential equations. It also does not support dynamical systems with fully

variable dynamical structure which should change after the model has been constructed.

These limitations do not affect the work presented here, but it means that cȯdγn is unsuitable

for the modeling of certain systems, such as modular robots. Furthermore, although the avail-

able contact models are suitable for locomotion, they are limited to point contacts and more

complex, multi-contact models (with varying geometries) are currently not available.

Similarly, although less novel, we also developed a framework for the purpose of large scale,

population based optimizations in a multi-user environment, in which simulation tasks are
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Chapter 6. Conclusion

automatically scheduled on available resources, such as a cluster. Easy to configure and ready

to deploy, it has provided the requisite infrastructure for many scientific works which would

otherwise have been more time consuming to accomplish. A variety of population based

optimization methods are provided within this open and freely available framework, including

Metamorphic Particle Swarm Optimization.

MMPSO is a Particle Swarm Optimization based algorithm specifically designed for solving

problems for which different possible solution structures exist, each with their own (possibly

overlapping) set of continuous parameters. The codesign of a wearable robot is an example

of such a problem, where the structure space consists of the wearable robot topologies and

actuator placement and the parameter space consists of wearable robot Cartesian posiition

and control parameters. MMPSO uses cooperative strategies, similar to those of PSO, to

transfer particles between parameter subspaces in a probabilistic manner. These probabilities

can be chosen in an informed manner, based on the complexity of the problem, the number

of total subspaces, the number of particles and the maximum number of iterations.

To validate our developed tools for the codesign of the wearable robot, we first started consider-

ing the occurrence of natural human gait using impedance control by optimizing for high-level

objectives only. Even though we only optimized for a specific target speed and minimized for

a measurement of energy using lexicographic ordering of the objectives, we reliably obtained

walking gaits with various global human characteristics. This validated both our optimization

method as well as our control method (i.e. impedance control) as a reasonable representation

of humanoid actuation. To investigate the role of human morphology for the performance

of locomotion, we then applied the exact same method to a model of the CoMan humanoid

robot. Here we found that it is not enough for the humanoid robot to be biomimetic, but that

care should be taken in the design of its morphology when looking at locomotion. In particular

we found that the feet were fundamental in obtaining any kind of reasonable gait and that

the location of the center of mass significantly affected locomotion performance. To show

the role that variable impedance can have, we furthermore performed a perturbation study

in simulation where we observed that optimizing only for stable walking, impedance was

modulated such that periodic perturbations during the swing phase could be reliably rejected.

We have thus far performed the work in simulation using 2D, planar models to explore human

locomotion optimization in the most important plane. Of course, simulations are usually not

easily transferred to reality, and future work includes the transfer of our developed controllers

to the CoMan robot to validate if our obtained gaits are suitable for walking using the robot.

There are several difficulties in doing so. First, we do not optimize for walking in 3D and the

resulting controller thus lacks control of the third dimension. Furthermore, even though our

controllers are stable in simulation, and are shown to exhibit a certain robustness, we do not

expect these local and open-loop controllers to be sufficient for stabilization of the real robot.

A possible way forward would be to use our optimized impedance controllers as feed-forward

pattern generators while a second, global stabilization feed-back controller modulates the

control signals to obtain a desired global stability.
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Finally, we come back to the co-design of the lower extremities, wearable robot for human

locomotion assistance. We combined all of our developed tools, methods and algorithms in

the design of a methodology for the effective optimization of various wearable robot structures

and their control. We limited ourselves to providing support for the hip and knee human

joints, leaving the ankle conventionally actuated. A candidate selection of possibly interesting

topologies resulted from an exhaustive enumeration taking into consideration the range of

motion and mobility of the structure. Furthermore, we developed a method to obtain all

possible pairs of actuated joints which fully described the motion of the system. By using

cȯdγn for the modeling, we could easily parametrize the morphology for each topology as well

as the control. Furthermore, cȯdγn provided all of the methods necessary to verify singularities

of the wearable robot structure and those of the human joints during nominal gait, leading to

an important pruning step in viable morphological solutions. We then performed an intensive

optimization using MMPSO to explore 126 morphological subspaces, each with their own set

of parameters, finally obtaining a number of non-anthropomorphic wearable robot solutions.

Being a complex optimization problem, and due to the stochastic nature of the optimization

method, we do not always obtain good solutions which are able to provide a stable walking

gait. Of those that do, we observed that a reasonable human-like gait (given the complexity)

can be obtained while still optimizing only for high-level objectives. The obtained wearable

robot structures expose various interesting characteristics, from which the most prominent

is seen in the mass distribution: each solution has optimized such as to minimize changing

the center of mass location of the complete system (human and wearable robot), leading to

increased stability. Furthermore, at least one actuator is always attached to the torso.

There are still many venues for exploration of the co-design approach for the possible design

of a non-anthropomorphic wearable robot, such as exploration of interaction forces, energy

stores and proper ankle support. Our optimized non-anthropomorphic solutions are not more

energy efficient than an anthropomorphic design using the same materials. The methodology

that we have developed is meant as an aid in the design process, where iterative refinements

and optimizations can be used to explore a morphological and parametric space which is

otherwise too vast.
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A Models

cȯdγn model A.1 – Basic CoMan model definition in cȯdγn. This makes use of an additional file (provided below in

model A.2) which specifies the inertial and kinematic properties. This file constructs the rigid body dynamics on

top of the base model.

require "physics/physics.cdn"

require "physics/contacts.cdn"

# The model properties are defined in a separate file. This allows

# for a more modular reuse of the model parameters , for other

# purposes than forward dynamics.

include "model.cdn"

# Here we apply physics specific templates to the various nodes

# defined in the model.

node | "coman" : physics.system {

# Apply joint templates to the model

node | "torso" : physics.joints.planarY {}

node | "@limbs" : physics.joints.revoluteY {}

# Kinematic structure

edge from "torso" to "hip{Right ,Left}" : physics.joint {}

edge from "hip{Right ,Left}" to "knee@1" : physics.joint {}

edge from "knee{Right ,Left}" to "ankle@1" : physics.joint {}

# Add two hard contact points in each of the ankles. We use defines

# from model.cdn for the dimensions of the foot so they are easily

# configurable

node | "ankle{Right ,Left}" {

# Contact point on the back of the heel

node "c1" : physics.contacts.hardPlanarY {

soleXMin = "−@heellength"

location = "[soleXMin; 0; −@footheight]"

}

# Contact point at the front of the foot

node "c2" : physics.contacts.hardPlanarY {

soleXMax = "@footlength − @heellength − @footlength ∗ @toelength"

location = "[soleXMax; 0; −@footheight]"

}

}
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include "physics/model.cdn"

include "physics/dynamics.cdn"

}

cȯdγn model A.2 – CoMan inertial and kinematic properties. This file is used by model A.1 to construct the full

rigid body dynamics model.

defines {

limbs = "{hip ,knee ,ankle ,toe}{Right ,Left}"

footlength = "0.15"

heellength = "0.03"

footheight = "0.095"

toelength = 0.25

}

node "coman" {

node "torso" {

com = "[ 0.00919962; −0.000250202; 0.212992]"

I = "[ 0.319291 , 0.000513593 , −0.00413699;
0.000513593 , 0.169801 , −0.000237841;

−0.00413699 , −0.000237841 , 0.179851]"

m = "14.4847"

tr = "[0; 0; 0.5268]"

}

node "hipRight" {

com = "[0.000739959; 0.00194785; −0.100464]"
I = "[0.0271576 , 3.52594e−05, 0.000132356;

3.52594e−05, 0.0265146 , −0.00144774;
0.000132356 , −0.00144774 , 0.00298617]"

m = "3.61731"

tr = "[0; −0.0726; 0]"

}

node "hipLeft" {

com = "[ 0.000739959; −0.00194785; −0.100464]"
I = "[ 0.0271576 , −3.16989e−05, 0.000132356;

−3.16989e−05, 0.0265146 , 0.00158918;

0.000132356 , 0.00158918 , 0.00298617]"

m = "3.61731"

tr = "[0; 0.0726; 0]"

}

node "kneeRight" {

com = "[0.00246127; −0.00530996; −0.0859895]"
I = "[0.0040604 , 1.12272e−05, 1.2261e−05;

1.12272e−05, 0.00400565 , 0.000518992;

1.2261e−05, 0.000518992 , 0.00124141]"

m = "1.40982"

tr = "[0; 0; −0.2258]"
}

node "kneeLeft" {

com = "[0.00246127; 0.00530996; −0.0859895]"
I = "[0.0040604 , 1.12272e−05, 1.2261e−05;
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1.12272e−05, 0.00400565 , 0.000518992;

1.2261e−05, 0.000518992 , 0.00124141]"

m = "1.40982"

tr = "[0; 0; −0.2258]"
}

node "ankleRight" {

com = "[0.00508618; −0.00479956; −0.0204323]"
I = "[0.00229076 , 3.25721e−05, 0.000333951;

3.25721e−05, 0.00263102 , 0.000153469;

0.000333951 , 0.000153469 , 0.00174337]"

m = "1.39639"

tr = "[0; 0; −0.201]"
}

node "ankleLeft" {

com = "[ 0.00508618; 0.00479956; −0.0204323]"
I = "[ 0.00229076 , −1.73029e−05, 0.000333951;

−1.73029e−05, 0.00263102 , 0.000398517;

0.000333951 , 0.000398517 , 0.00174337]"

m = "1.39639"

tr = "[0; 0; −0.201]"
}

}
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Appendix B. Complementary figures

Figure B.1 – Rendering of a walking sequence optimized for the CoMan robot using a variable
stiffness and damping controller (step). The gait shown here is relatively slow, 0.44ms−1, but
manages an efficient cost of transport. See also section 4.2 for more details on the methods
used to optimize this gait.
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Figure B.2 – Rendering of a walking sequence optimized for the CoMan robot using a vari-
able stiffness and damping controller (step) while under perturbation. The perturbations are
applied randomly on the ankle in the direction of locomotion during the swing phase. The
resulting controller, although open loop, is able to self-stabilize by modulating the stiffness
and damping periodically. See also section 4.2.4 for more details on the methods used to
optimize this gait.
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Figure B.3 – Rendering of a non-anthropomorphic wearable robot co-designed for human
locomotion. See chapter 5 for more details on the methods used to optimize this wearable
robot.
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Figure B.4 – Rendering of a non-anthropomorphic wearable robot co-designed for human
locomotion. See chapter 5 for more details on the methods used to optimize this wearable
robot.
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