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INTRODUCTION

• Body versus mind, embodied intelligence

• Strong notion in natural systems

• Adaptation of morphology is a product of natural evolution

• Take inspiration from natural processes for engineering 
processes

4

Motivation
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INTRODUCTION

• Development of a methodology for the co-design of bipedal 
machines, with a case study in wearable lower limb devices

5
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INTRODUCTION

• Development of a methodology for the co-design of bipedal 
machines, with a case study in wearable lower limb devices

• Study of principles of human gait optimization and control

• Rigorous modeling of coupled dynamical systems and rigid 
body dynamics suitable for locomotion and co-design

5

Topics
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OVERVIEW

1. Introduction

2. Dynamical systems

3. Human gait optimization

4. Co-design methodology for wearable devices

5. Conclusion

6
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Dynamical systems
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DYNAMICAL SYSTEMS

• Generally: a system which changes over time

• Interested in simulation of:

• Control dynamics

• Articulated rigid body dynamics

• Coupled dynamics

8
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DYNAMICAL SYSTEMS

• A framework for modeling and integrating multi-domain, 
coupled dynamical systems

• Motivations

1. Free/open

2. Expressive, strong focus on modeling

3. Good performance

4. Educational
9

codyn - coupled dynamical systems
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DYNAMICAL SYSTEMS

10

l1 r1

l2 r2

l3 r3

l . . . r . . .

ln rn

d e f i n e s {

n = 10

}

node "{r , l }{1 :@n}" {

R = 1

p ’ = "2 * p i "

r ’ = " (R - r ) "

x = " r * cos (p) "

}

<b i d i r e c t i o n a l >

edge from " r {1 :@n}" to "l@1" {

p ’ = " s i n ( input . p - output . p - p i ) "

}

<b i d i r e c t i o n a l >

edge from "{r , l }{1 :@n}" to "@1$(@2 + 1) " {

b ia s = " 0 .1 * p i "

p ’ = " s i n ( input . p - output . p - b i a s ) "

}

Modeled after IJspeert et al. (2007)

Run
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DYNAMICAL SYSTEMS

• Articulated rigid body dynamics essential tool in robotics 
research (modeling, simulation, control)

• Hard problem, a variety of simulators existing today

• Accuracy vs. performance vs. modeling effort

11

codyn - Rigid Body Dynamics
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DYNAMICAL SYSTEMS

• General purpose, 3D articulated rigid body dynamics

• Entirely user extensible, customized joint models, contact 
models

• State of the art:  Availability of inverse, forward, closed chain, 
hard contacts, Jacobians, etc.

12

codyn - Rigid Body Dynamics
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DYNAMICAL SYSTEMS
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DYNAMICAL SYSTEMS
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DYNAMICAL SYSTEMS

14

Sunday, June 29, 14



June 27, 2014     On the dynamics of human locomotion and co-design of lower limb assistive devices

DYNAMICAL SYSTEMS
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DYNAMICAL SYSTEMS
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DYNAMICAL SYSTEMS
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DYNAMICAL SYSTEMS
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DYNAMICAL SYSTEMS

• Naive implementations of RBD have very poor performance

• Automatically translate models to an efficient representation

• Fast, optimized code

• Suitable for Real Time systems

• Suitable for low-resource, embedded systems (for example 
micro-controllers)

18

codyn - Performance
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DYNAMICAL SYSTEMS

19

codyn - Performance
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DYNAMICAL SYSTEMS
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codyn - Performance
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DYNAMICAL SYSTEMS

21

http://www.codyn.net/
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Human gait optimization
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HUMAN GAIT OPTIMIZATION

• Given a physical (articulated rigid body) structure

• Use automated processes to find how to control this 
structure to perform a specified task

• Generally called “Optimization”

• We used Particle Swarm Optimization (Kennedy, Eberhart; 
1995)

23
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HUMAN GAIT OPTIMIZATION
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HUMAN GAIT OPTIMIZATION
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HUMAN GAIT OPTIMIZATION
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Why?
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HUMAN GAIT OPTIMIZATION
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HUMAN GAIT OPTIMIZATION
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HUMAN GAIT OPTIMIZATION

1. What is the minimal, sufficient model for human gait 
optimization?

2. What are the objectives leading to stable, human gait?

29
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HUMAN GAIT OPTIMIZATION
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HUMAN GAIT OPTIMIZATION
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Demonstration
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HUMAN GAIT OPTIMIZATION
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HUMAN GAIT OPTIMIZATION
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HUMAN GAIT OPTIMIZATION

32

Impedance control

⌧i(t) = ki(t)(q̄i(t)� qi(t))� bi(t)q̇i

Spring Damper
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HUMAN GAIT OPTIMIZATION

33

Objectives

1. Walk at a specific speed

2. Walk without falling over

3. Minimize energy
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HUMAN GAIT OPTIMIZATION
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HUMAN GAIT OPTIMIZATION
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HUMAN GAIT OPTIMIZATION

35

�20

0

20

40

H
ip

(�
)

const

�20

0

20

40

step

�20

0

20

40

ppoly

0

20

40

60

K
ne

e
(�

)

0

20

40

60

0

20

40

60

�40

�20
0

20

40

A
nk

le
(�

)

�40

�20
0

20

40

�40

�20
0

20

40

�20

0

20

40

H
ip

(�
)

const

�20

0

20

40

step

�20

0

20

40

ppoly

0

20

40

60

K
ne

e
(�

)

0

20

40

60

0

20

40

60

�40

�20
0

20

40

A
nk

le
(�

)

�40

�20
0

20

40

�40

�20
0

20

40

�20

0

20

40

P
o
s
i
t
i
o
n

(

� )

const

�20

0

20

40

step

�20

0

20

40

ppoly

0

50

100

150

S
t
i
ff
n
e
s
s

(
N

m
r
a
d

�
1
k
g

�
1
)

0

50

100

150

0

50

100

150

0

0.5

1

D
a
m

p
i
n
g

(
N

m
s
r
a
d

�
1
k
g

�
1
)

0

0.5

1

0

0.5

1

�20

0

20

40

P
o
s
i
t
i
o
n

(

� )

const

�20

0

20

40

step

�20

0

20

40

ppoly

0

50

100

150

S
t
i
ff
n
e
s
s

(
N

m
r
a
d

�
1
k
g

�
1
)

0

50

100

150

0

50

100

150

0

0.5

1
D

a
m

p
i
n
g

(
N

m
s
r
a
d

�
1
k
g

�
1
)

0

0.5

1

0

0.5

1

Sunday, June 29, 14



June 27, 2014     On the dynamics of human locomotion and co-design of lower limb assistive devices

HUMAN GAIT OPTIMIZATION
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HUMAN GAIT OPTIMIZATION
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Morphology/control co-design
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CO-DESIGN

38

Ekso ReWalkRex
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CO-DESIGN
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CO-DESIGN

• Development of a co-design methodology, using 
evolutionary inspired processes

• EVRYON: use case for a non-anthropomorphic, lower limb 
wearable device for locomotion

• A framework for the iterative co-design of wearable 
devices, focussing on open-ended exploration of solutions

39

Problem domain
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CO-DESIGN
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CO-DESIGN
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CO-DESIGN
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CO-DESIGN
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CO-DESIGN
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CO-DESIGN

43
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CO-DESIGN
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CO-DESIGN

• Various problems with this first attempt

• Not self-stable

• Artifacts due to contact modeling

• Use of singularities

• No reliable method to determine interaction forces

45
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CO-DESIGN

46

Sunday, June 29, 14



June 27, 2014     On the dynamics of human locomotion and co-design of lower limb assistive devices

CO-DESIGN

47

Topo Mass CoM (up) Segment size

2 83.3 (+13.3) 1.07 (-0.03) 0.3 - 0.46

5 83.9 (+13.9) 1.02 (-0.08) 0.2 - 0.52

3 83.5 (+13.5) 1.03 (-0.07) 0.1 - 0.64
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CO-DESIGN

• Development of a complete framework for co-design 
(dynamics/control, optimization, simulation)

• Successfully optimize human like gaits with parallel 
structures

• Automatic and simultaneous exploration of solution 
structures and their parameters

• Mass distribution particularly important

48
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Conclusion
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CONCLUSION

1. Open and freely available, framework for modeling of multi-
domain coupled dynamics systems

2. State of the art, competitive rigid body dynamics simulator

3. Novel particle swarm optimization based algorithm for co-
optimization of solution structures and their parameters

4. Robust optimization of human gait from global objectives using 
simple, local impedance control

5. Front-to-end framework for the co-design of morphology and 
control of robotic structures

50

Main contributions
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CONCLUSION

• Methodology shown to be feasible

• Should provide input in a larger, iterative design process

• Open-ended search does not provide complete solutions

51

Co-design
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QUESTIONS

52
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CO-DESIGN

53
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HUMAN GAIT OPTIMIZATION
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Transfer of methodology to a human-like platform

�20

0

20

40

Jo
in

t
an

gl
e

(�
)

Hip

0

20

40

60

Knee

�40

�20

0

20

40
Ankle

Step controller kinematics

Single step (stance to stance)

Sunday, June 29, 14



June 27, 2014     On the dynamics of human locomotion and co-design of lower limb assistive devices

HUMAN GAIT OPTIMIZATION
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Transfer of methodology to a human-like platform
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HUMAN GAIT OPTIMIZATION
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Transfer of methodology to a human-like platform
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HUMAN GAIT OPTIMIZATION
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Joint CoM

x

CoM

y

l m r

g

torso 0.000 0.030 n.a 0.678 0.90

up leg 0.000 °0.108 0.25 0.100 0.32

low leg 0.000 °0.108 0.25 0.047 0.30

ankle 0.004 °0.002 0.04 0.011 0.48

toe 0.001 0.000 0.03 0.003 0.10

0.09

0.03

0.03

1.80m
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Joint CoM

x

CoM

y

l m r

g

torso 0.00 0.18 n.a 0.530 0.11

up leg 0.00 °0.08 0.19 0.132 0.09

low leg 0.00 °0.07 0.17 0.052 0.05

ankle 0.00 °0.02 0.08 0.051 0.03
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0.03

1.20m
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f (x, y) = 2° (|x °0.5|+ |y °0.5|)
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